=				21	(c) Borate	()	Lead salt	
=	🛛 🖵 Ordina	ary Th	inking	13.	A precipitate of calci	um oxalate will in	ot dissoive in	[CPMT 1971]
Ì	U	ITY III.	nnang		(a) HCl	(b)	HNO ₃	
Ì		Objectiv	e Questions				-	
=		Objectiv	e Questions	14	(c) Aqua-regia Sodium sulphite on l	()	Acetic acid	LabinCER
Ţ				14.	Sodium sulphite on l (a) Turns lead acet	-	e HUI liberates	s a gas which includes
	Prelimina	ary Test				potassium dichro	mate paper gree	n
					(c) Burns with a bl	•	Thate r-r · o	
	In borax bead test, which of the	e	• •	PMT 2002]	(d) Smells like vine	gar		
	(a) Meta borate	(b) Tetra ł		15.	Starch-iodide paper i			
	(c) Double oxide	(d) Ortho			(a) lodine		lodide ion	
	The metal that does not give th	e borax-bead to			(c) Oxidising agent	. ,	Reducing agent	
	(a) Chromium	(b) Nickel	[MP PMT 1999] 	16.	Which of the follow			
	(a) Chromum (c) Lead	(d) Manga			solution and dil. H_2	SO_4 solution ar	nd gives green fla	ime test
	Which of the following is colour	•			(a) $CuCl_2$	(b)	$BaCl_2$	
	Which of the terms of	tu comp	[BCECE 2005]		(c) $PbCl_2$	(d)	$Cu(NO_3)_2$	
	(a) CuF_2	(b) Cul		17.	Two gases when mix			ises are
	-		17		(a) NH_3 and SO		SO_2 and stea	
	(c) NaCl	(d) MgCl	-					
	The composition of 'Golden spa	0.		-0	(c) NH_3 and HC		NH_3 and N_3	₂ 0
	(a) $PbCrO_4$	(b) <i>PbI</i> ₂		18.	Blue borax bead is ol	btained with	[MADT Bihar 198:	9. MP PET 1995]
	(c) As_2S_3	(d) BaCr	rO_{4}		(a) <i>Zn</i>	(b)	Cobalt	2; /// 10. 1990;
	The alkaline earth metal that		•		(a) <i>En</i> (c) Chromium	(d)	_	
	bunsen flame when introduced				Which of the following	()		rner flame[DCE 200
	(a) Barium	(b) Stronti	lium		(a) $B(OMe)_3$	(b)	N. (OLI)	-
	(c) Calcium	(d) Magne			(c) $Al(OPr)_3$	(d)		
	Which gives violet coloured bea			20.	In laboratory burners	. ,	Sh(Cirj2	[DCE 2004]
	~	-	[BHU 1988; MP PET 1997]	20.	(a) Producer gas		Oil gas	[UC5 2004]
	(a) Fe^{2+}	(b) Ni^{2+}			(c) Gobar gas		Coal gas	
	(c) Co^{2+}	(d) Mn^{2+}	+	21.	A colourless gas with	. ,	•	_
	Sodium borate on reaction with				6	(1)	-	[AFMC 2005]
	gives a compound 'A' which bu				(a) H_2S	(b)	PH_3	
	'A' is [MP PET 1994]	, i			(c) SO_2	(d)	None of these	
	(a) $H_2B_4O_7$	(b) (C_2H)	$I_5)_2 B_4 O_7$	22.	Which BLUE LIQUID) is obtained on	reacting equimol	lar amounts of
	(c) H_3BO_3	(d) $(C_2 H)$	H_{a}) BO_{a}		two gases at -30° C?			[IIT 2005]
	On mixing two colourless gase				(a) NO		NO NO	
	On mixing two colourless gase The gases are	s, a ueep ore.	[CPMT 1977]	~~	(c) NO and HSC		NO, IaCl the smean	• • •
	(a) N_2O and O_2	(b) <i>NO</i> a		23.	MnO_2 and H_2SC	\mathcal{D}_4 added to \mathcal{D}_4		
			2		liberated is	(L)	•	Orissa JEE 2005]
	(c) N_2O_3 and O_2	(d) None o			(a) <i>Cl</i> ₂		NH_3	
	Which one of the following methods heated with Na_2CO_3 solid and	/ · · · · ·			(c) N ₂	(d)	H ₂	
	(a) <i>Cu</i>	(b) <i>Mg</i>			Wet T	est for acid	l radical	
	(c) <i>Al</i>	(d) <i>Zn</i>						
	The metal that does not give th			1.	Which of the followi	ing statement(s)	is(are) correct w	/hen a mixture
		-	AFMC 1995; MHCET 2003]		of $NaCl$ and K_2C	•	. ,	
	(a) Cr	(b) <i>Ni</i>				2 .		MP PMT 2002]
	(c) <i>Na</i>	(d) <i>Mn</i>			(a) A deep red vap	our is evolved		
	When concentrated H_2SO_4 fumes evolve. These fumes are		o dry KNO3, brown [CPMT 1988; 11T 1987]			ien passed into 1	VaOH solution	gives a yellow
	(a) SO_2	(b) <i>SO</i> ₃			(c) Chlorine gas is			
	(c) NO	(d) NO_2			(d) Chromyl chlorid			
	Which one of the following salt	· · · _		2.	Starch can be used a		• the detection of	traces of[CPMT 19
	salt is tested by Pt wire	give green co	loureu name when the		(a) Glucose in aque			- <u>-</u>
	(a) Barium salt	(b) Calciur	m salt		(b) Proteins in bloo			

Get More Learning Materials Here : 📕

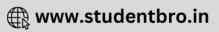
	(c) lodine in aqueous solution	on		(a) $PbCl_2$	(b) $PbSO_4$
_	(d) Urea in blood			(c) AgCl	(d) $CaCO_3$
3.	Which of the following combi complex	ines with <i>Fe</i> (11) ions to form a brown [A11MS 1982, 87; AFMC 1988;	15.	Nitrates of all the metals a	ire [DPMT 1983, 89
	•	PMT 2000; Pb. PMT 2000; MP PET 2000, 01]		(a) Coloured	(b) Unstable
	(a) N_2O	(b) <i>NO</i>	_	(c) Soluble in water	(d) Insoluble in water
	(c) $N_2 O_3$	(d) $N_2 O_5$	16.	Nitrate is confirmed by r due to the formation of	ing test. The brown colour of the ring
4.		n added to an alkaline solution of le colour ion due to the formation of[11T 1	995]		[EAMCET 1979; AFMC 1981, 88, 90; RPET 199 MP PMT 2000; MP PET 2002; CPMT 2004
	(a) $Na[Fe(H_2O)_5 NOS]$	(b) $Na_2[Fe(H_2O)_5 NOS]$		(a) Ferrous nitrite	(b) $FeSO_4NO$
	(c) $Na_3[Fe(CN)_5 NOS]$	(d) $Na_4[Fe(CN)_5 NOS]$		(c) $FeSO_4NO_2$	(d) Ferrous nitrate
5.	In the chromyl chloride test, t	the reagent used is [AMU 1983]	17.	Which of the following p	recipitate does not dissolve even in larg
	(a) $K_2 CrO_4$	(b) <i>CrO</i> ₃		excess of NH_4OH	[MP PMT 199
	(c) $K_2 C r_2 O_7$	(d) $(NH_4)_2 Cr_2 O_7$		(a) $AgCl$	(b) AgBr
6.		ot produce a precipitate with $AgNO_3$		(c) AgI	(d) None of these
	solution	[MP PMT 1990]	18.	Aqueous solution of a sa	alt when treated with $AgNO_3$ solution
	(a) F^-	(b) <i>Br</i> ⁻		gives a white precipitate	, which dissolves in NH_4OH . Radic
	(c) CO_3^{2-}	(d) PO_4^{3-}		present in the salt is	
_	5			(a) Cl^-	(b) <i>Br</i> ⁻
7.	When a mixture of solid IV	<i>aCl</i> , solid $K_2Cr_2O_7$ is heated with			(d) NO_3^-
	conc. $H_2 S O_4$, orange red v	vapours are obtained of the compound[Cl	יאיז 1974, 1 9 .	78; 81, 88; DPMT 1983, 89; When CO ₂ is passed in	to lime water it turns milky. When exces
	(a) Chromous chloride	NCERT 1977; AFMC 1982; AMU 1984] (b) Chromyl chloride	19.	of CO_2 is passed, milkyn	
	(c) Chromic chloride	(d) Chromic sulphate		(a) Reaction is reversed	
8.	Chromyl chloride vapours ar	e dissolved in NaOH and acetic acid		(b) Water soluble $Ca(H)$	ICO.). is formed
	and lead acetate solution is ac			(c) Vaporisable calcium	
	(a) The solution will remain			(d) None of these	
	(b) The solution will become(c) A yellow solution will be		20.		with conc. H_2SO_4 with MnO_2 brow
	(d) A yellow precipitate will			fumes are formed due to	2 7 2
9.	Which of the following gives passed through its solution	s black precipitate when H_2S gas is [CPMT 1974]		(a) Br^-	(b) NO_{3}^{-}
	(a) Acidic $AgNO_3$	(b) $Mg(NO_3)_2$		(c) Cl^-	(d) I^-
	(c) Ammonical $BaCl_2$	(d) Copper nitrate	21.		t with dil H_2SO_4 liberates a colourles
10.		when treated with conc. H_2SO_4 . It		gas which produces (i) tr acidified dichromate solu	urbidity with baryta water and (ii) turr 1tion green. The reaction indicates th
	contains	[DPMT 1981; CPMT 1971]		presence of	[11] [199]
	(a) Cl^-	(b) <i>I</i> ⁻		(a) CO_3^{2-}	(b) S^{2-}
	(c) Br^{-}	(d) NO_3^-		(c) SO_3^{2-}	(d) NO_2^-
11.	< <i>/</i>	-	22.		dical, the white precipitate of sulphate
	chloroform layer turns violet.	o a salt solution containing chloroform, Salt contains	22.	soluble in	
		[CPMT 1982]		(a) Conc. <i>HCl</i>	(b) Conc. H_2SO_4
	(a) Cl^-	(b) <i>I</i> ⁻		(c) Conc. HNO_3	(d) None of these
	(c) NO_{3}^{-}	(d) S^{2-}			
12.	-	dil. H_2SO_4 and then with conc.	23.	odourless gas is evolved. T	dil. H_2SO_4 is added in cold; colourles the mixture contains
	H_2SO_4 . No reaction takes p			ododiness gas is evolved. T	[AMU 198
	(a) Nitrate	(b) Sulphide		(a) Sulphite	(b) Acetate
	(c) Oxalate	(d) Sulphate		(c) Nitrite	(d) Carbonate
		nonium molybdate gives precipitate of	24.	Which reagent is used to r	
13.					[Pb. PMT 200
13.	(a) Violet	(b) Pink			
13.		(b) Pink (d) Green		(a) $BaSO_4$	(b) <i>NaOH</i>

Get More Learning Materials Here : 🗾

r www.studentbro.in

25.		ssium iodide is heated with conc.	37. Na_2CO_3 cannot be used to identify [BVP 2004]	
	H_2SO_4	[CPMT 1971]	(a) CO_3^{2-} (b) SO_3^{2-}	
	(a) HI	(b) I_2	(c) S^{2-} (d) SO_4^{2-}	
	(c) HIO_3	(d) <i>KIO</i> ₃	38. The number of hydroxide ions, produced by one molec	ule of sodium
26.	Chromyl chloride test is per presence of the following in a	formed for the confirmation of the mixture	carbonate (Na_2CO_3) on hydrolysis is [Pb. CET 2002]	
		[CPMT 1990; KCET 1992; RPET 1999]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(a) Sulphate	(b) Chromium	39. Gas A is bubbled through slaked lime when a white	precipitate is
27.	(c) Chloride A reagent that can distinguish	(d) Chromium and chloride between a chloride and a peroxide is	formed. On prolonged bubbling, the precipitate is heating[EAMCESD [976] solution, the white precipitate r	dissolved. on eappears with
	(a) Water	(b) Dil. H_2SO_4	the evolution of gas B . The gases A and B respectively A and	-
	(c) KOH solution	(d) NaCl	(a) CO_2 and CO (b) CO and CO_2	
28.		enable you to remove sulphate ions	(c) CO and CO (d) CO_2 and CO	-
			CP40. 1979B91 bassing H_2S gas in acidified $KMnO_4$ solution, where MnO_4 solution is the matrix of the ma	ve get
	(a) Sodium hydroxide	(b) Barium hydroxide		[MP PET 1997]
	(c) Barium sulphate	(d) Potassium hydroxide	(a) K_2S (b) S	
29.		ssium iodide solution liberates certain paper blue. The liberated substance	(c) $K_2 SO_3$ (d) MnO_2	
	is [Orrisa JEE 2002]		41. Which of the following doesn't give a ppt. with	silver nitrate
	(a) Oxygen	(b) Iodine	solution.	
	(c) Hydrogen iodide	(d) Potassium hydroxide	(a) Ethyl bromide (b) Sodium bromid	[J & K 2005] e
30.	When KBr is treated with c	onc. H_2SO_4 a reddish-brown gas is	(c) Calcium chloride (d) Sodium chlorid	
	evolved. The evolved gas is	[EAMCET 1978]		
	(a) Bromine		Wet Test for Basic radical	
	(b) Mixture of bromine and	HBr		
	(c) HBr		1. Which sulphide is soluble in $(NH_4)_2 CO_3$	
	(d) NO_2		(a) SnS (b) As_2S_3	
31.	A solution of a salt in dilute s	ulphuric acid imparts deep blue colour		
		confirms the presence of which of the	(c) Sb_2S_3 (d) CdS	
	following	[MP PET 2003; NCERT 1974; CPMT 1977]	2. When acetic acid and $K_4 Fe(CN)_6$ is added to a chocolate precipitate is obtained of the compound	copper salt, a
	(a) NO_2^-	(b) <i>I</i> ⁻	(a) Copper cyanide (b) Copper ferrocya	mide
	(c) NO_3^-	(d) CH_3COO^-	(c) Basic copper sulphate (d) Basic copper cy	anide
32.	Ammonia reacts with excess o		3. A precipitate of the following would be obtained w	hen <i>HCl</i> is
		[DPMT 2000]	added to a solution of stannous sulphide (SnS) in yellow
	(a) N and HCl	(b) NH Cl and NCl		7; NCERT 1974]
	(c) NCl and HCl	(d) <i>N</i> and <i>NHCl</i>	(a) SnS (b) SnS_2	
33.	A brown ring appears in the to		(c) Sn_2S_2 (d) $(NH_4)_2SnS_3$	
	LEAMUET	978; KCET 1991; Bihar CEE 1995;		
	[4. When H_2S is passed through in 11 group somet	imes solution
	(a) Nitrate (c) Bromide	AllMS 1996; DCE 1999] (b) Nitrite (d) Iron	4. When H_2S is passed through in 11 group somet becomes milky. It indicates the presence of	
34.	(a) Nitrate (c) Bromide	AllMS 1996; DCE 1999] (b) Nitrite (d) Iron	becomes milky. It indicates the presence of	[MP PMT 1995]
34.	(a) Nitrate (c) Bromide	AllMS 1996; DCE 1999] (b) Nitrite	becomes milky. It indicates the presence of	[MP PMT 1995] ent
34.	(a) Nitrate (c) Bromide Which of the following anions	AllMS 1996; DCE 1999] (b) Nitrite (d) Iron	becomes milky. It indicates the presence of (a) Acidic salt (b) An oxidising ag	[MP PMT 1995] ent ht for group III
14.	(a) Nitrate(c) BromideWhich of the following anions solution	AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron would decolourise acidified $KMnO_4$	 becomes milky. It indicates the presence of (a) Acidic salt (b) An oxidising ag (c) Thiosulphate (d) A reducing ages 5. Conc. HNO₃ is added before proceeding to test members. This is to 	[MP PMT 1995] ent it
	 (a) Nitrate (c) Bromide Which of the following anions solution (a) SO₄²⁻ (c) NO₃⁻ 	AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron would decolourise acidified $KMnO_4$ (b) S^{2-}	becomes milky. It indicates the presence of (a) Acidic salt (b) An oxidising ag (c) Thiosulphate (d) A reducing agen 5. Conc. HNO_3 is added before proceeding to test members. This is to (a) Oxidise any remaining H_2S (b) Convert ferrous ion into ferric ion	[MP PMT 1995] ent ht for group III
	(a) Nitrate (c) Bromide Which of the following anions solution (a) SO_4^{2-} (c) NO_3^{-} The gas which is absorbed blackish brown colour is (a) NO	AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron would decolourise acidified $KMnO_4$ (b) S^{2-} (d) CH_3COO^- by ferrous sulphate solution giving [AMU 1999] (b) CO	becomes milky. It indicates the presence of (a) Acidic salt (b) An oxidising ag (c) Thiosulphate (d) A reducing agent 5. Conc. HNO_3 is added before proceeding to test members. This is to (a) Oxidise any remaining H_2S (b) Convert ferrous ion into ferric ion (c) Form nitrates which give granular ppts	[MP PMT 1995] ent ht for group III
35.	(a) Nitrate (c) Bromide Which of the following anions solution (a) SO_4^{2-} (c) NO_3^{-} The gas which is absorbed blackish brown colour is (a) NO (c) N_1	AllMS 1996; DCE 1999] (b) Nitrite (d) Iron would decolourise acidified $KMnO_4$ (b) S^{2-} (d) CH_3COO^- by ferrous sulphate solution giving [AMU 1999] (b) CO (d) NH_2	becomes milky. It indicates the presence of (a) Acidic salt (b) An oxidising ag (c) Thiosulphate (d) A reducing agent 5. Conc. HNO_3 is added before proceeding to test members. This is to (a) Oxidise any remaining H_2S (b) Convert ferrous ion into ferric ion (c) Form nitrates which give granular ppts (d) Increase ionisation of ammonium hydroxide	[MP PMT 1995] ent ht for group III [NCERT 1974]
35.	(a) Nitrate (c) Bromide Which of the following anions solution (a) SO_4^{2-} (c) NO_3^{-} The gas which is absorbed blackish brown colour is (a) NO (c) N_1	AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron would decolourise acidified $KMnO_4$ (b) S^{2-} (d) CH_3COO^- by ferrous sulphate solution giving [AMU 1999] (b) CO (d) NH_i anions is not easily removed from	becomes milky. It indicates the presence of (a) Acidic salt (b) An oxidising ag (c) Thiosulphate (d) A reducing agent 5. Conc. HNO_3 is added before proceeding to test members. This is to (a) Oxidise any remaining H_2S (b) Convert ferrous ion into ferric ion (c) Form nitrates which give granular ppts (d) Increase ionisation of ammonium hydroxide 6. A salt gives bright red colour to the flame. This colour presence of	[MP PMT 1995] ent ht for group III [NCERT 1974]
34. 35. 36.	(a) Nitrate (c) Bromide Which of the following anions solution (a) SO_4^{2-} (c) NO_3^{-} The gas which is absorbed blackish brown colour is (a) NO (c) N Which one of the following	AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron would decolourise acidified $KMnO_4$ (b) S^{2-} (d) CH_3COO^- by ferrous sulphate solution giving [AMU 1999] (b) CO (d) NH_i anions is not easily removed from	 becomes milky. It indicates the presence of (a) Acidic salt (b) An oxidising ag (c) Thiosulphate (d) A reducing agent 5. Conc. HNO₃ is added before proceeding to test members. This is to (a) Oxidise any remaining H₂S (b) Convert ferrous ion into ferric ion (c) Form nitrates which give granular ppts (d) Increase ionisation of ammonium hydroxide 6. A salt gives bright red colour to the flame. This colour 	[MP PMT 1995] ent ht for group III [NCERT 1974]

Get More Learning Materials Here :



The compound insoluble in acetic aci			(d) None of these		
(a) Calaium avida (b)	[CPMT 1989]	18.	The ion that cannot be precipi	itated by	both HCl and H_2S is [IIT
() ()) Calcium carbonate) Calcium hydroxide		(a) Pb^{2+}		Cu ⁺
Which of the following give white p	recipitate when HCl is added		(c) Ag^+	(d)	Sn^{2+}
to its aqueous solution	19.	<i>Pb</i> (<i>CH</i> , <i>COO</i>) ₂ givescolour wit	th <i>HS</i>	[DPMT 2000]
) <i>Mg</i> ⁺⁺		(a) Orange	()	Red
(c) Zn^{++} (d)) Cd^{++}		(c) Black	. ,	White
Of the following sulphides which one soluble in alkalies	e is insoluble in dilute acids but [CPMT 1990]	20.	<i>Fe</i> ion can be distinguished by (a) NH_4SCN	•	ру [DPMT 2000] АgNO ₃
(a) <i>PbS</i> (b)) CdS				None of these
(c) FeS (d)) Sb_2S_3		(c) $BaCl_2$		
Reagent used in the qualitative analys	sis of 1Vth group is	21.	Which of the following change <i>FeCl</i> ₃	e the con	[Roorkee Qualifying 1998]
(a) <i>HCl</i> (b)) H_2S (alkaline)		(a) $K_4 [Fe(CN)_6]$	(b)	H ₂ S
(c) $(NH_4)_2 S$ (d)) None of these				-
Which of the following radicals will			(c) NH_4CNS	()	KCNS
H_2S in concentrated acid solution	[BHU 1986]	22.	Which of the following sub HNO_3	ostances	are soluble in concentrated [Roorkee Qualifying 1998]
(a) Copper(b)(c) Arsenic(d)) Antimony) Cadmium		(a) $BaSO_4$	(b)	CuS
Which of the following pairs would			(c) PbS	(d)	HgS
	CERT 1984]	23.	Which of the following cannot	()	0
(a) K^+, SO_4^{2-} (b)) Na^+, S^{2-}			-	[AIIMS 1997]
· · · · · · · · · · · · · · · · · · ·) Al^{3+}, OH^{-}		(a) Fe^{3+}	. ,	<i>Cu</i> ²⁺
H_2S will precipitate the sulphid	es of all the metals from the		(c) Pb^{2+}	(d)	Ag^{2+}
solution of chlorides of Cu, Zn and		24.	Which of the following mixture	e is chroi	
	[MP PMT 1985]		(a) $V(r O \rightarrow 1) U(r)$		[Pb. PMT 2000]
(a) The solution is aqueous	[(a) KCrO and HCl (b) KSO and conc. HSO 		
(b) The solution is acidic			(b) KSO and conc. HSO(c) KCrO and conc. HSO		
(c) The solution is dilute acidic			(d) <i>HSO</i> and <i>HCl</i>		
(d) Any of these solutions is presen		25.	Which of the following compo	unds is b	rown coloured
Addition of solution of oxalate to an P_{1} ++ P_{2} ++ P_{3} ++ P_{3	•				[AFMC 2001]
Ba^{++}, Sr^{++} and Ca^{++} will precip	itate [MP PMT 1985]		(a) <i>Fe</i> [<i>Fe</i> (<i>CN</i>)] (c) <i>Fe</i> [<i>Fe</i> (<i>CN</i>)]	. ,	Fe[Fe(CN)] KFe[Fe(CN)]
) Ca^{++} and Sr^{++}	26.	If Na^+ ion and S^{2-} ion is		
) All the three		following will be least soluble i		
Which one among the following pairs H S in dilute hydrochlaria acid [10]			(a) MgS	()	NaCl
H_2S in dilute hydrochloric acid [II]	-		(c) Na_2S		MgCl ₂
) Al^{3+}, Hg^{2+}	27.	An aqueous solution of an in gives a white precipitate. This	. 0	
(c) Zn^{2+}, Cu^{2+} (d)) Ni^{2+}, Cu^{2+}				[MP PMT 2001]
Distinguishing reagent between silver	r and lead salts is		(a) <i>Hg</i>	(b)	-
	[MADT Bihar 1984]	-	(c) $Z\pi$	(d)	
(a) H_2S gas		28.	Lead sulphate is soluble (a) In conc. nitric acid		[MP PET 1999]
(b) Hot dilute HCl solution			(b) In conc. hydrochloric acid	đ	
(c) NH_4Cl (solid) + NH_4OH s	olution		(c) In a solution of ammoniu		e
(d) NH_4Cl (solid) + $(NH_4)_2Cl$	D_3 solution		(d) In water		
Group reagent for the precipitation of	-	29.	Which one of the following su	lphides is	•
qualitative analysis table is	[MADT Bihar 1982]		(a) 7ing subhide	(1-)	[MP PMT 1999]
(a) Dil. $HCl + H_2S$			(a) Zinc sulphide(c) Nickel sulphide	. ,	Cadmium sulphide Lead sulphide
(b) NH_4Cl (solid) + NH_4OH s	solution + H_2S	30.	When HS gas is passed th	hrough t	he HCl containing aqueous
(c) $(NH_4)_2 CO_3$ solution	2		solutions of CuCl, HgCl, BiCl	and Co	<i>Cl,</i> which does not precipitate

Get More Learning Materials Here : 💻

CLICK HERE

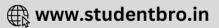
>>

	(a) <i>CuS</i> (b) <i>HgS</i>
	(c) BiS (d) CoS
31.	Group reagent for analytic group <i>IV</i> is
	[Kurukshetra CET 2002]
	(a) NHCl + NHOH
	(b) $NHCI + NHOH + HS$
	(c) $NHOH + (NH)_{2}CO_{3}$
	(d) $HCl + HS$
32.	When HS is passed through HgS we get[AIEEE 2002]
	(a) HgS (b) $HgS + HgS$
	(c) $Hg_{,}S + Hg$ (d) $Hg_{,}S$
33.	How do we differentiate between <i>Fe</i> and <i>Cr</i> in group III
	(a) By taking excess of <i>NHOH</i> solution [AIEEE 2002]
	(b) By increasing <i>NH</i> ion concentration
	(c) By decreasing OH^- ion concentration
	(d) Both (b) and (c)
34.	$[X] + HSO \rightarrow [Y]$ a colourless gas with irritating smell
	$[Y] + KCrO + HSO \rightarrow \text{green solution}$
	[X] and [Y] is [IIT-JEE (Screening) 2003]
	(a) $SO_3^{2^-}, SO_2$ (b) CI^-, HCI
	(c) S^{2-}, H_2S (d) CO_3^{2-}, CO_2
35.	In the analysis of basic radicals, the group reagent HS gas is
	generally used in the groups [MP PMT 2003]
	(a) 1 and 11 groups(b) 11 and 111 groups(c) 111 and V groups(d) 11 and 1V groups
36.	A mixture of two salts is not water soluble but dissolves completely
	in dilute hydrochloric acid to form a colourless solution. The mixture could be [Pb. PMT 1998]
	(a) $AgNO_3$ and KBr (b) $BaCO_3$ and ZnS
	(c) $FeCl_3$ and $CaCO_3$ (d) $Mn(NO_3)_2$ and $MgSO_4$
37.	Which of the following is not precipitated as sulphide by passing <i>HS</i>
	in presence of conc. <i>HCl</i> [MP PMT 2000]
	(a) Copper (b) Arsenic (c) Cadmium (d) Lead
38.	Concentrated sodium hydroxide can separate a mixture of
•	[MP PMT 2000]
	(a) Zrr and Pb (b) AI and Zrr
20	(c) <i>Cr</i> and <i>Fe</i> (d) <i>Al</i> and <i>Cr</i> <i>AgCl</i> dissolves in ammonia solution giving
39.	[MP PMT 1989; MP PET 2001]
	(a) Ag^+ , NH_4^+ and Cl^- (b) $Ag(NH_3)^+$ and Cl^-
	(c) $Ag_2(NH_3)^+$ and Cl^- (d) $Ag(NH_3)^+_2$ and Cl^-
40.	What product is formed by mixing the solution of $K_4[Fe(CN)_6]$
40.	
	with the solution of FeCl ₃ [Roorkee 1989] (a) Ferro-ferricyanide (b) Ferric-ferrocyanide
	 (a) Ferro-ferricyanide (b) Ferric-ferrocyanide (c) Ferri-ferricyanide (d) None of these
41.	In fifth group, $(NH_4)_2 CO_3$ is added to precipitate out the
	carbonates. We do not add Na_2CO_3 because
	[AllMS 1982]
	(a) $CaCO_3$ is soluble in Na_2CO_3
	(b) Na_2CO_2 increases the solubility of fifth group carbonates

- (b) Na_2CO_3 increases the solubility of fifth group carbonates
- (c) $MgCO_3$ will be precipitated out in fifth group
- (d) None of these

- **42.** Al^{3+} , Fe^{3+} , Zn^{2+} and Ni^{2+} ions are present in an acidic solution. Excess of ammonium chloride solution is added followed by addition of ammonium hydroxide solution. The available precipitate will contain [MP PMT 1996]
- (a) $Zn(OH)_2$ and $Ni(OH)_2$ (b) $Al(OH)_3$ and $Fe(OH)_3$ (c) $Zn(OH)_2$ and $Al(OH)_3$ (d) $Ni(OH)_2$ and $Fe(OH)_3$ When HS is passed through a mixture containing Cur, Nr, Zn in 43. acidic solution then ion will precipitate [RPMT 2002] (a) Cur, Nr (b) Nr (c) Cur, Zn (d) *Cu* In the precipitation of the iron group in qualitative analysis, 44. ammonium chloride is added before adding ammonium hydroxide to [AIIMS 198 CPMT 1971, 73, 77,78, 80, 81, 83, 86; KCET 1999] (a) Decrease concentration of OH^- ions (b) Prevent interference by phosphate ions (c) Increase concentration of Cl^- ions (d) Increase concentration of NH_4^+ ions Ferric ion forms a prussian blue coloured ppt. due to 45. [CPMT 1980; BHU 1980; MP PET 1995; Kurukshetra CEE 1998; RPET 1999; MP PMT 2001] (b) $Fe_4[Fe(CN)_6]_3$ (a) $K_4 Fe(CN)_6$ (c) $KMnO_4$ (d) $Fe(OH)_3$ When H_2S gas is passed into a certain solution, it reacts to form a 46. white precipitate. The solution referred to contains ions of [EAMCET 1979] (a) Lead (b) Zinc (c) Copper (d) Nickel
- **47.** A precipitate of would be obtained on adding HCl to a solution of (Sb_2S_3) in yellow ammonium sulphide
 - [CPMT 1979]
 - (a) Sb_2S_3 (b) Sb_2S_5 (c) SbS (d) SbS_2

48. A 0.3 *M HCl* solution contains the following ions Hg^{++} , Cd^{++} , Sr^{++} , Fe^{++} , Cu^{++} The addition of H_2S to above solution will precipitate [CPMT 1973] (a) *Cd*, *Cu* and *Hg* (b) *Cd*, *Fe* and *Sr* (c) *U C Cu* and *Hg* (c) *Cd*, *Fe* and *Sr*


(c) *Hg, Cu* and *Fe* (d) *Cu, Sr* and *Fe*

49. Which of the following gives a ppt. with $Pb(NO_3)_2$ but not with $Ba(NO_3)_2$ [CPMT 1979; MP PET 1997]

- (a) NaCl
- (b) Sodium acetate
- (c) Sodium nitrate
- (d) Sodium hydrogen phosphate
- 50. On adding excess of ammonium hydroxide to a copper sulphate solution [MP PMT 1995]
 - (a) Blue precipitate of copper hydroxide is obtained
 - (b) Black precipitate of copper oxide is obtained
 - (c) A deep blue solution is obtained
 - $(d) \quad \text{No change is observed} \\$

Get More Learning Materials Here : 📕

51.	A black sulphide is formed by the action of H_2S on	
	[IIT 1978]	
	(a) Cupric chloride (b) Cadmium chloride	
	(c) Zinc chloride (d) Sodium chloride	6
52.	An aqueous solution contains the ions as Hg_2^{2+} , Hg^{2+} , Pb^{2+} ,	-
	and Cd^{2+} . The addition of dilute $\mathit{HCl}(6N)$ precipitates	
	(a) Hg_2Cl_2 only (b) $PbCl_2$ only	
	(c) $PbCl_2$ and $HgCl_2$ (d) Hg_2Cl_2 and $PbCl_2$	
53.	In the group 111 radicals, in place of NH_4Cl which of the following can be used [AllMS 1980, 82; MP PMT 1985]	6
	can be used [AIIMS 1980, 82; MP PMT 1985] (a) NH_4NO_3 (b) $(NH_4)_2SO_4$	
	(a) $NH_4 NO_3$ (b) $(NH_4 J_2 SO_4$ (c) $(NH_4), CO_3$ (d) $NaCl$	
		6
54.	When HCl gas is passed through saturated solution of $BaCl_2$, a	•
	white ppt. is obtained. This is due to [CPMT 1979]	
	(a) Impurities in $BaCl_2$ (b) Impurities in HCl	
	(c) Precipitation of $BaCl_2$ (d) Formation of complex	6
	-	0
55.	Which compound does not dissolve in hot dilute HNO_3	
	[11T 1996] (a) HgS (b) PbS	
	(c) CuS (d) CdS The inertial temperature H S is	6
56.	The ion that can be precipitated by HCl as well as H_2S is	
	[MP PET 1996; JIPMER (Med.) 2002] (a) Pb^{2+} (b) Fe^{3+}	
	(c) Zn^{2+} (d) Cu^{2+}	6
57.	Which of the following sulphate is insoluble in water [MNR 1995]	
	(a) $CuSO_4$ (b) $CdSO_4$	
	(c) $PbSO_4$ (d) $Bi(SO_4)_3$	
58.	A solution when treated with dimethyl glyoxime gives a rose red complex. The metal present is [AFMC 1982; BHU 1979]	
	(a) <i>Ni</i> (b) <i>V</i>	
	(c) Co (d) Mn	7
59.	When bismuth chloride is poured into a large volume of water, the	
	white precipitate produced is [MP PMT 1985; CPMT 1979]	7
	(a) $Bi(OH)_3$ (b) Bi_2O_3	
	() 2 3	
60.	Mark the compound which turns black with NH_4OH	
	[AFMC 1981; MP PMT 1995] (a) Lead chloride (b) Mercurous chloride	7
	(c) Mercuric chloride (d) Silver chloride	
61.	Colour of cobalt chloride solution is [AFMC 1981]	
	(a) Pink (b) Black	7:
c	(c) Colourless (d) Green	7.
62.	Sodium carbonate cannot be used in place of ammonium carbonate for the precipitation of the fifth group radicals because	
	(a) Sodium ions interfere with the detection of fifth group radicals(b) Concentration of carbonate ions is very low	
	(c) Sodium will react with acidic radicals	7
	(d) Magnesium will be precipitated	
63.	Nessler's reagent is used to detect	

	[CHMT 1909; AIIMIS 1997; MIT FLT 1999]
	(a) CrO_4^{2-} (b) PO_4^{3-}
	(c) MnO_4^- (d) NH_4^+
64.	A light greenish coloured salt was soluble in water. On passing H_2S
	into the solution a black precipitate was obtained which dissolve readily in <i>HC</i> [11 T1996]etal ion present is [BHU 1981]
	(a) Co^{+2} (b) Fe^{2+}
	(c) Ni^{+2} (d) Mn^{+2}
65.	Yellow ammonium sulphide solution is a suitable reagent for the separation of [BHU 1987]
	(a) HgS and PbS (b) PbS and Bi_2S_3
	(c) Bi_2S_3 and CuS (d) CdS and As_2S_3
66.	$\mathit{Fe}(OH)_3$ can be separated from $\mathit{Al}(OH)_3$ by addition of
	[BHU 1981]
	(a) Dil. <i>HCl</i> (b) <i>NaCl</i> solution
	(c) $NaOH$ solution (d) NH_4Cl and NH_4OH
67.	The reagents NH_4Cl and aqueous NH_3 will precipitate
	[IIT 1991]
	(a) Ca^{2+} (b) Al^{+3}
	(c) Mg^{2+} (d) Zn^{2+}
68.	The aqueous solutions of the following salts will be coloured in the case of [11T 1990]
	(a) $Zn(NO_3)_2$ (b) $LiNO_3$
	(c) CrCl ₃ (d) Potash alum
69.	A mixture containing Cu^{2+} and Ni^{2+} can be separated for identification by [MP PMT 1994]
	(a) Passing H_2S in acid medium
	(b) Passing H_2S in alkaline medium
	(c) Passing H_2S in neutral medium
	(d) Passing H_2S in dry mixture
70.	Addition of $SnCl_2$ to $HgCl_2$ gives ppt [BVP 2003]
	(a) White turning to red (b) White turning to gray
	(c) Black turning to white (d) None of these
71.	When dilute aqueous solution of <i>AgNO</i> , (excess) is added to <i>K1</i> solution, positively charged sol. Particles of <i>Ag1</i> are formed due to adsorption of ion [BHU 2003]
	(a) NO_3^- (b) O_2^-
	(c) Ag^+ (d) K^+
72.	Heamoglobin is a complex of [CPMT 2003]
	(a) Fe^{3+} (b) Fe^{2+}
	(c) Fe^{4+} (d) Cu^{2+}
73.	A colourless crystalline salt ' X is soluble in dilute <i>HCI</i> . On adding <i>NaOH</i> solution, it gives a white precipitate which is insoluble in excess of <i>NaOH</i> . ' X is [KCET 2003]
	(a) A[A][A][A][A][A][A][A][A][A][A][A][A][A]
	(c) MgSO (d) SnCl
	Descipitate of mean \mathcal{W} actions takes also when \mathcal{H} S is

[CPMT 1989; AIIMS 1997; MP PET 1999]

74. Precipitate of group IV cations takes place when H_2S is

(a)	Highly ionised	(b)	Less ionised

 $(c) \quad \text{Not ionised} \qquad \qquad (d) \quad \text{None of these} \\$

Get More Learning Materials Here : 📕

CLICK HERE

[RPET 2003]

- In Nessler's reagent for the detection of ammonia the active species (c) AI and Zn(d) Zn and Pb 75. [Kerala (Med.) 2003] is H_2S is passed through an acidified solution of Ag, Cu and 88 (b) Hg^{2+} (a) Hg_2Cl_2 Zn. Which forms precipitate [BHU 1998] Ag (b) Zn (d) HgI_4^{2-} (a) (c) Hg_2I_2 (c) *Cu* (d) None of these On addition of aqueous NaOH to a salt solution, a white 76. The presence of NH_4Cl in the test solution while precipitating 89. gelatinous precipitate is formed, which dissolves in excess alkali. The [MP PMT 1994] salt solution contains group III-A hydroxides (in qualitative inorganic analysis) helps in (a) Chromium ions (b) Aluminium ions (a) Lowering OH^- (b) Lowering $[NH_{\downarrow}OH]$ (d) Iron ions (c) Barium ions (c) Increasing OH^- (d) Increasing $[NH_{\downarrow}OH]$ A solution prepared in conc. *HCl* sometimes gives white turbidity 77. even in the absence of 1' group, when water is added to it. It is due On saturating aqueous solution of Cu (11), Pb (11) and Zn (11) ions 90. to the presence of with H_2S will precipitate (b) Sb^{3+} (a) Hg^{2+} (a) Only CuS (b) Only PbS (d) Sb^{3+} or Bi^{3+} or both (c) Ag^{3+} (c) Both CuS and PbS(d) CuS, PbS and ZnSWhich of the following pairs of ions when mixed in dilute solutions 78. A chloride dissolves appreciably in cold water when placed on a 91. may give precipitate platinum wire in Bunsen flame, no distinctive colour is noted, which [CPMT 1976; NCERT 1987; Kurukshetra CEE 1998] cation could be present [Pb. PMT 1998] (a) Na^+, SO_4^{2-} (b) NH_4^+, CO_3^{2-} (a) Mg^{2+} (b) Ba^{2+} (d) Fe^{3+}, PO_4^{3-} (c) $Na^+ . S^{2-}$ (c) Pb^{2+} (d) Ca^{2+} A solid (A) which has photographic effect reacts with the solution of Which one of the following sulphides is only completely precipitated 92. 79. a sodium salt (B) to give a pale yellow ppt. (C). Sodium salt on when the acidic solution is made dilute heating gives brown vapour. Identify A, B and C. [MP PET 2000] (b) *PbS* (a) HgS $AgNO_3$, NaBr, AgBr(b) $AgNO_3$, NaCl, $AgCl_2$ (a) (c) CdS (d) CuS (c) $AgNO_3$, NaBr, $AgCl_2$ (d) AgCl, NaBr, $AgBr_2$ A reagent used to test the presence of Fe^{2+} ion is 80. In qualitative analysis, in order to detect second group basic radical, 93. [KCET 1998] H_2S gas is passed in the presence of dilute *HCl* to (b) NH_4CNS (a) H_2S [KCET 2004] (d) $K_3 Fe(CN)_6$ (c) $K_4 Fe(CN)_6$ (a) Increase in dissociation of H_2S 81. Identify the statement which is not correct regarding copper (b) Decrease the dissociation of salt solution [UPSEAT 2001] sulphate (a) It reacts with KI to give iodine (c) Decrease the dissociation of H_2S (b) It reacts with KCl to give CuCl (d) Increase the dissociation of salt solution (c) It reacts with NaOH and glucose to give CuO H_2S gas when passed through a solution of a contains HCl 94. (d) It gives CuO on strong heating in air precipitate the cations of group of qualitative analysis but not those Mark the correct statement [MP PMT 2002] 82. belonging to the fourth group. It is because (a) 1 group basic radicals precipitate as chlorides [CBSE PMT 2005] (b) IV group basic radicals precipitate as sulphides (a) Presence of HCl decreases the sulphide ion concentration (c) V group basic radicals precipitate as carbonates (b) Presence of HCl increases the sulphide ion concentration (d) All of these statement are correct Solubility product of group 11 sulphides is more than that of (c) 83. The following four solutions are kept in separate beakers and copper group IV sulphides metal is put in each of them. Which solution will become blue after Sulphides of group IV Cations are in HCl (d) some time [MP PMT 2003] A metal nitrate reacts with KI to give a black precipitate which on (b) Zn(NO) solution 95. (a) AgNO solution addition of excess of KI convert into orange colour solution. The (c) Ba(NO), solution (d) NaNO solution cation of the metal nitrate is Cu^{2+} ions will be reduced to Cu^{+} ions by the addition of an [IIT-JEE (Screening) 2005] 84. aqueous solution of [AIIMS 1992] Bi^{3+} (a) Hg^{2+} (b) (a) *KF* (b) *KCl* (c) Pb^{2+} (d) Cu^+ KI (d) *KOH* (c) Which of the following basic radicals will not be precipated by H_2S [Pb. PMT 2001] [Pb. CET 2003] 96. Which radicals are precipitated in (NH) CO in presence of alkali 85. (a) Ca, Ba, Sr (b) *Mg* (a) Mn^{2+} Ni^{2+} (b) (c) Both (d) None (MP-PET 1994, 97] 86. Which of the following is soluble in yellow ammonium sulphide (d) Ca^{2+} (c) (b) *CdS*
 - On passing H_2S black ppt. of 11 group is obtained. The mixture 97. may not contain [CPMT 1989]
 - (b) *Cd*⁺⁺ Pb^{++} (a) (c) Hg^{++} (d) Cu ++

Get More Learning Materials Here : 📕

(d) *PbS*

(b) Al and Fe

Which mixture is separated by conc. aqueous solution of sodium

(a)

87.

CuS

SnS (c)

(a) Al and Sm

hydroxide

[UPSEAT 1999]

98.	Ferrous and ferric ions in so (a) Silver nitrate solution	lution may	be distinguished by using		(a) <i>N</i> /5
	(b) Lead acetate solution				(c) $N/8$
	(c) Acidified solution of po	otassium pe	rmanganate	5.	A 100 <i>ml</i> so
	(d) Sodium chloride solutio			<u>J</u> .	N - NaOH
99.			l. <i>HNO</i> ₃ when treated with		30 <i>ml</i> of <i>NaC</i>
	NH_4OH becomes blue be	cause of the	presence of		by adding 0.2 required for co
	(a) <i>Mg</i>	(b)	Cd		required for co
	(c) <i>Bi</i>	(d)	Си		(a) 16 <i>ml</i>
100.		H_4OH so	olution the compound formed		(c) 35 <i>ml</i>
	is	(1)	[BCECE 2005]	6.	In 1 <i>gram</i> of a
	(a) $NH_2 - Hg - Cl$		$Hg_2Cl_2NH_3$		the equivalent
	(c) $Hg(NH_3)_2 Cl_2$	(d)	$HgCl_2NH_3$		(a) 17
01.	Copper sulphate solution rea	act with	KCM[BCECE	2005]	(c) 68
	(a) $K_3[Cu(CN)_4]$	(b)	CuCN	7.	If 20 <i>ml</i> of 0.25
	(c) $Cu(CN)_2$	(d)	$K_2[Cu(CN)_4]$		mixed, then the
02.			a black precipitate which on		(a) 0.25 N bas
	addition of excess of KI co	onvert into	orange colour solution. The	•	(c) 0.25 <i>N</i> aci
	cation of the metal nitrate is $(a) Har$		[IIT 2005] Bi	8.	What volume a into 30 <i>ml</i> of <i>l</i>
	(a) <i>Hg</i> (c) <i>Pb</i>	(d)	Cu		solution to 0.2
03.		()	solution of a contains HCl		(a) 357.2 <i>ml</i>
			qualitative analysis but not		(c) 537.6 <i>ml</i>
	those belonging to the fourt	h group. It		•	
	(a) Presence of <i>HCl</i> decr	aacaa tha a	[CBSE PMT 2005]	9.	8 <i>ml</i> of $\frac{N}{10}$
	(b) Presence of <i>HCl</i> increase		-		Na_2CO_3 in v
	(-)		F ··· ·		(a) 0.40 N
		group 11 su	lphides is more than that of		(c) 4.0 N
	group IV sulphides (d) Sulphides of group IV (cations are	in <i>HCl</i> .	10.	Required amou
104.			n alkaline solution of sulphide		N/10 250 m
	ions produce a		[AFMC 2005]		
	(a) Red colouration		Blue colouration		(a) 0.158 g
	(c) Purple colouration	(d)	Brown colouration		(c) 15.75 g
	Volumet	ric Ana	lveie	11.	15 <i>ml</i> of 0.2 <i>N</i>
_	Volumet		19515		acid solution. C
	What waight of ordium hud	rovido io ro	quired to neutralise 100 <i>ml</i> of		(a) 0.1 N
Ι.	0.1 $N - HCl$	roxide is re	[MP PMT 1994]		(c) 0.15 N
	(a) 4.0 gm	(b)	0.04 gm	12.	200 ml 0.6 N
	(c) 0.4 gm		2.0 gm		together. Acidio
	The range of methyl orange		C C	I	[CPMT 1984]
2.			-	l	(a) $0.5 N$
	(a) $6 - 8$. ,	8 - 9		(c) 0.3 N
_	(c) $3-5$		2-4	13.	10 <i>ml</i> of 10 <i>M</i>
3.	Phenolphthalein is not a goo	a indicator	-		The resultant s
	(a) NaOH against oxalic		[NCERT 1977]		(a) Acidic
					(c) Weakly all

- (b) Ferrous sulphate against $KMnO_4$
- (c) NaOH against HCl
- (d) NaOH against H_2SO_4
- **4.** 15 *ml* of N/10 NaOH solution completely neutralises 12 *ml* of H_2SO_4 solution. The normality of H_2SO_4 solution will be

- (a) N/5 (b) N/10
- (c) N/8 (d) N
- A 100 *ml* solution of 0.1 N HCl was titrated with 0.2 N NaOH solution. The titration was discontinued after adding 30 *ml* of NaOH solution. The remaining titration was completed by adding 0.25 N KOH solution. The volume of *KOH* required for completing the titration is

[MP PMT 1997] (b) 32 *ml* (d) 70 *ml*

- In 1*gram* of a metal oxide, metal precipitated is 0.68*gram*. what is the equivalent weight of metal [JIPMER 2002] (a) 17 (b) 34
 - (c) 68 (d) 52If 20 m/ of 0.25 N strong acid and 30 m/ of 0

If 20 *ml* of 0.25 *N* strong acid and 30 *ml* of 0.2 *N* of strong base are mixed, then the resulting solution is [KCET 2002]

- (a) 0.25 *N* basic (b) 0.2 *N* acidic
- (c) 0.25 *N* acidic (d) 0.2 *N* basic
- What volume at *N.T.P.* of gaseous *NH* will be required to be passed into 30 *ml* of *NHSO* solution to bring down the acid strength of this solution to 0.2 *N* [UPSEAT 2001]
 - (a) 357.2 *ml* (b) 444.4 *ml*
 - (c) 537.6 *ml* (d) 495.6 *ml*
- **9.** 8 *ml* of $\frac{N}{10}HCl$ are required to neutralize 20 *ml* solution of

 $\mathit{Na_2CO_3}$ in water. Normality of $\mathit{Na_2CO_3}$ solution is

(a)	0.40 N	(b)	0.040 N
(c)	4.0 N	(d)	1.4 N

- **0.** Required amount of crystalline oxalic acid (eq. wt. = 63) to prepare N/10 250 *ml* oxalic acid solution is
 - [MP PMT 1996] (a) 0.158 g (b) 1.575 g (c) 15.75 g (d) 6.3 g
- . 15 *ml* of 0.2 *N* alkali is required to complete neutralization of 30 *ml* acid solution. Concentration of the acid solution is
 - [NCERT 1985; CPMT 1986] (a) 0.1 N (b) 0.3 N (c) 0.15 N (d) 0.4 N
- **12.** 200 ml 0.6 N H_2SO_4 and 100 ml of 0.3N HCl are mixed together. Acidic normality of the resultant solution is

ſ	CPMT 1084]	[DPMT 1991]
L	CPMT 1984] (a) 0.5 N	(b) 0.9 <i>N</i>
	(c) 0.3 <i>N</i>	(d) 0.6 N
13.	10 <i>ml</i> of 10 <i>M</i> H_2SO_4 is mix	ixed to 100 ml 1M NaOH solution.
	The resultant solution will be	[NCERT 1971]
	(a) Acidic	(b) Neutral
	(c) Weakly alkaline	(d) Strongly alkaline
14.	Volume of 0.1 M H_2SO_4 red	equired to neutralize 30 <i>ml</i> of 0.2 <i>N</i>
	NaOH is	[EAMCET 1978; MP PMT 2001]
	(a) 30 <i>ml</i>	(b) 15 <i>ml</i>

(c) 40 *ml* (d) 60 *ml*

15. $5N H_2SO_4$ was diluted from 1 *litre* to 10 *litres*. Normality of the solution[MbtBtTetb95]

Get More Learning Materials Here :

CLICK HERE

(a)	10 N	(b)	5 N
(c)	1 <i>N</i>	(d)	0.5 N

16. 0.45 g of an acid (mol wt. = 90) required 20 ml of 0.5 N KOH for complete neutralization. Basicity of acid is

(a)	1	(b) 2
(c)	3	(d) 4

17.	Equivalent weight of	crystaline oxalic acid is	[MP PMT 1995]
	(a) 12	(b) 63	
	(c) 53	(d) 40	

18. Volume of $\frac{N}{10}H_2SO_4$ required to neutralize 10 *ml* 5 *N* Na_2CO_3 is

(a)	100 <i>ml</i>	(b)	50 ml

ľ

24.

(c) 500 *ml* (d) 1000 *ml*

19. The equivalent weight of *KMnO* in alkaline medium will be

(a)	31.60	(b)	52.66
(c)	79.00	(d)	158.00

20. An aqueous solution of 6.3g oxalic acid dehydrate is made up to 250 ml. The volume of 0.1N NaOH required to completely neutralize 10 ml of this solution is

[IIT-JEE (Screening) 2001]

[MP PMT 2001]

[CPMT 1979]

(a)	40 <i>ml</i>	(b)	20 <i>ml</i>
(c)	10 <i>ml</i>	(d)	4 <i>ml</i>

21. In the standardization of NaSO using KCrO by iodometry, the equivalent weight of KCrO is

[IIT-JEE (Screening) 2001]

- (a) (Molecular weight)/2
- (b) (Molecular weight)/6
- (c) (Molecular weight)/3
- (d) Same as molecular weight
- 25 ml of a solution of NaCO having a specific gravity of 1.25 required 32.9 ml of a solution of HCl containing 109.5 grams of the acid per litre for complete neutralization. Calculate the volume of 0.84 N HSO that will be completely neutralized by 125 grams of the NaCO solution[UPSEAT 2001]2.
 (a) 460 ml
 (b) 540 ml

(a)	400 <i>mi</i>	(b)	540 mi
(c)	480 <i>ml</i>	(d)	470 ml

23. The volume of 0.05 M H_2SO_4 required to neutralise 80 ml of 0.13 N NaOH will be [CPMT 1989]

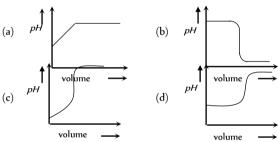
(a)	104 <i>ml</i>	(b)	52 ml
(c)	10.4 <i>ml</i>	(d)	26 <i>ml</i>

How many grams of *NaOH* will be required to prepare 250 *ml* of 0.1 *M* solution [EAMCET 1978]

(a)	1 <i>gm</i>	(b)	4 <i>gms</i>	
(c)	40 <i>gms</i>	(d)	10 <i>gms</i>	

25. Molecular weight of oxalic acid is 126. The weight of oxalic acid required to neutralise 100 cc of normal solution of NaOH is

(a)	6.3 <i>gm</i>	(b)	126 <i>gm</i>
(c)	530 gm	(d)	63 <i>gm</i>


- **26.** Concentrated HCl is 10 N, 1000 cc of 1N HCl can be obtained by diluting [EAMCET 1978]
 - (a) 1 cc of conc. HCl to 1000 cc
 - (b) 10 cc of conc. HCl to 1000 cc
 - (c) 20 cc of conc. HCl to 1000 cc
 - (d) 100 cc of conc. HCl to 1000 cc

- **27.** The equivalent weight of an acid is equal to
 - (a) Molecular weight \times acidity
 - (b) Molecular weight × basicity
 - (c) Molecular weight / basicity
 - $(d) \quad \text{Molecular weight / acidity} \\$
- **28.** A metal oxide is reduced by heating it in a stream of hydrogen. It is found that after complete reduction, 3.15 *g* of the oxide have yielded 1.05 of the metal. We may deduce that
 - (a) The *eq.* weight of the metal is 8
 - (b) The atomic weight of the metal is 8
 - (c) The atomic weight of the metal is 4
 - (d) The *eq.* weight of the metal is 4
- 29. The molecular weight of a tribasic acid is *M*. What will be its equivalent weight [CPMT 1974, 79; MP PMT 2003]

(a)
$$\frac{M}{2}$$
 (b) M

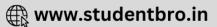
(c)
$$\frac{M}{3}$$
 (d) $\sqrt{\frac{M}{3}}$

30. Which of the following plot represents the graph of *pH* against volume of alkali added in the titration of *NaOH* and *HCl*

31. Phenolphthalein is not suitable for the titration of

[MP PMT 2003]

[AllMS 1998]


- (a) NaOH vs (COOH) (b) KOH vs HSO
- (c) KCO vs HCl (d) None of these

In order to prepare one *litre* normal solution of *KMnO* how many *gm* of *KMnO* are required, if the solution is to be used in acid medium for oxidation [MP PET 2002]

- (a) 158 gm (b) 31.60 gm
- (c) 62.0 gm (d) 790 gm
- **33.** 20 *ml* of a solution of a weak monobasic acid neutralizes 22.18 *ml* of a solution of *NaOH* and 20 *ml* of *N*/10 *HCl* neutralizes 21.5 *ml* of the same *NaOH* solution. The normality for the acid is nearly[**MP PET 2002**]
 - (a) 10 N (b) 1 N
 - (c) 0.10 *N* (d) 100 *N*
- 34. How many *ml* of 1 (*M*) H_2SO_4 is required to neutralise 10 *ml* of 1(*M*) *NaOH* solution
 - [NCERT 1973] [MP PET 1997; MP PMT 1999] (a) 2.5 (b) 5.0
 - (c) 10.0 (d) 20.0

35. The maximum amount of $BaSO_4$ precipitated on mixing $BaCl_2$ (0.5*M*) with H_2SO_4 (1*M*) will correspond to

- (a) 0.5 *M* (b) 1.0 *M*
- (c) 1.5 *M* (d) 2.0 *M*

[AIIMS 1997]

36.	How many grams of $NaOH$ are equivalent to 100 ml of 0.1 N oxalic acid	
	(a) 0.2 (b) 2.0	4
	(c) 0.4 (d) 4.0	-
37.	How much of <i>NaOH</i> is required to neutralize 1500 <i>cm</i> of 0.1 <i>N HCl</i> (At. <i>wt</i> . of <i>Na</i> = 23) [KCET (Med.) 2001]	
	(a) 4 g (b) 6 g	
	(c) 40 g (d) 60 g	4
38.	0.126 g of an acid requires 20 ml of 0.1 N NaOH for complete neutralization. The equivalent weight of the acid is	
	[MP PET 2001]	
	(a) 45 (b) 53	5
	(c) 40 (d) 63	
39.	The ratio of amounts of HS needed to precipitate all the metal ions from 100 ml of 1 M AgNO and 100 ml of 1 M CuSO is	
	(a) 1:2 (b) 2:1	5
	(c) Zero (d) Infinity	Э
40.	The equivalent weight of a divalent metal is 31.82. The weight of a single atom is [MH CET 2000]	
	(a) 63.64 (b) $\frac{63.64}{6.02 \times 10^{23}}$	
	(c) $32.77 \times 6.02 \times 10^{23}$ (d) $63.64 \times 6.02 \times 10^{23}$	
41.	For the preparation of sodium thiosulphate by "Springs reaction", the reactants used are [EAMCET 2003]	5
	(a) $NaS + NaSO + Cl$	
	(b) $NaS + SO$	
	(c) $NaSO_{2} + S$	
	(d) $Na_{J}S + Na_{J}SO_{J} + I_{2}$	
42.	Phenolphthalein is most suitable indicator for the titration of	
	[MP PMT 2000]	5
	(a) CH COOH and NH OH	5
	(b) CH_COOH and NaOH	
	(c) HCl and NHOH	
	(d) HCO and NHOH	
43.	The simplest formula of a compound containing 50% of element X (at. w <i>t</i> . 10) and 50% of element Y (at. <i>wt</i> =20) is	
	[DPMT 2000]	5
	(c) $X_i Y$ (d) XY The equivalent weight of a metal is 4.0. The vapour density of its	
44.	chloride is 59.25. Its atomic weight is [DPMT 2000] (a) 12 (b) 8	5
	(c) 36 (d) 24	
45	Indicator for the titration of <i>HCl</i> and Na_2CO_3 would be	
45.		
	[RPMT 1999]	5
	(a) $K_4 Fe(CN)_6$ (b) $K_3 Fe(CN)_6$	
	(c) Phenolphthalein (d) Methyl orange	
46.	20 <i>ml</i> of a <i>N</i> solution of <i>KMnO</i> , just reacts with 20 <i>ml</i> of a solution of oxalic acid. The weight of oxalic acid crystals in 1 <i>N</i> of the solution is []IPMER 1999]	_
	(a) $31.5 g$ (b) $126 g$	5
	(a) $51.5 g$ (b) $120 g$ (c) $63 g$ (d) $6.3 g$	
47.	0.53 gm of Na_2CO_3 has been dissolved in 100 ml of a sodium	
4/.	carbonate solution. The normality of the solution will be	5

(a) $\frac{N}{5}$ (b) $\frac{N}{2}$ (c) $\frac{N}{10}$ (d) *N*

48. 2 N - HCl will have the same molar concentration as

(a)
$$0.5 \ N - H_2 SO_4$$
 (b) $1.0 \ N - H_2 SO_4$
(c) $2 \ N - H_2 SO_4$ (d) $4 \ N - H_2 SO_4$

49. Which of the following pair does not distinguish by passing H_2S

(a)	Hg, Pb	(b) <i>Cd</i> , <i>Pb</i>
(c)	As, Cu	(d) Zn , Mn

- If 100 ml of 1 N sulphuric acid were mixed with 100 ml of 1 M 50. sodium hydroxide, the solution will be [MP PET 1999]
 - (a) Acidic (b) Basic (c) [MP PET 2001] (d) Slightly acidic
- 100 cm^3 of 0.1 N HCl solution is mixed with 100 cm^3 of 0.2 N 51. NaOH solution. The resulting solution is

[MP PET 1996]

[CPMT 1996]

- (a) 0.1 N and the solution is basic
- (b) 0.05 *N* and the solution is basic
- (c) 0.1 N and the solution is acidic
- (d) 0.05 N and the solution is acidic
- 52. For preparing 0.1 N solution of a compound from its impure sample, of which the percentage purity is known, the weight of the [MP PET 1996] substance required will be
 - (a) More than the theoretical weight
 - (b) Less than the theoretical weight
 - (c) Same as theoretical weight
 - (d) None of these
- The equivalent weight of Zn(OH) in the following reaction is equal 53. to its, $[Zn(OH) + (NO) \rightarrow Zn(OH)(NO) + HO]$

[MH CET 1999]

(a)	Formula wt.	$(b) \frac{\text{Form}}{1}$	mula wt.	
(a)	2	(0)	1	

(c) $3 \times$ formula wt. (d) $2 \times$ formula wt.

54. In the titration of strong acid and weak base, the indicator used is

(a)	Thymol blue	(b)	Phenolphthalein
(c)	Thymolphthalein	(d)	Methyl orange

To neutralize 25 ml of 0.25 M Na_2CO_3 solution how much 55. volume of 0.5 M HCl is required [MP PET 1994]

- (a) 12.5 ml (b) 25 ml
- (c) 37.5 ml (d) 50 ml

0.16 gm of a dibasic acid required 25 ml of decinormal NaOH 56. solution for complete neutralization. The molecular weight of the acid is [CPMT 1989; MP PET 1993] (a) 32 (b) 64

(c) 128 (d) 256

57. When 100 ml N – NaOH solution and 10 ml of 10 N sulphuric acid solution are mixed together, the resulting solution will be[DPMT 1982; MP I

- (a) Alkali (b) Weakly acidic
- (d) Neutral (c) Strongly acidic
- Cosin [MPAPMT 1996] ect end point of precipitation titration by 58. adsorption is called [KCET (Med). 2000]
 - (b) Adsorption indicator (a) Absorption indicator (c) Chemical indicator
 - (d) Normal indicator

Get More Learning Materials Here :

CLICK HERE

	(t) 03.00 (d) (02.00
60.	Molecular weight of a tribasic acid is <i>W</i> ,	, its equivalent weight is
	(a) 2W (b)	W/3 71.
	(c) 3W (d)	W - 3
61.	Approximate atomic weight of an eleme weight is 8.9, the exact atomic weight of	•
	(a) 26.89 (b) 8	8.9 72.
	(c) 17.8 (d) 2	26.7
62.	1 <i>gm</i> of hydrogen is found to combine <i>gm</i> of calcium (valency 2) combines w equivalent weight of calcium is	6
		[NCERT 1982] 73.
		20
_	() .	80
63.	4.0 <i>gram</i> caustic soda is dissolved in 10 of solution is	[MP PMT 1995]
		0.1
	(c) 0.5 (d) 4	
64.	Which of the following is required to ne	
	(a) $1 l - N - H_2 SO_4$ (b) 1	$l - M - H_2 SO_4$
	(c) $1 l - 2N - H_2 SO_4$ (d) 1	$l = 0.5N - H_2 SO_4$
65.	What will be the volume of <i>CO</i> at S.T.P of <i>BaCO</i> (Atomic number of $Ba = 137$))
	() $()$ $()$ $()$ $()$ $()$ $()$ $()$	[MP PMT 2003]
		0.84 litre
66.	(c) 2.24 <i>litre</i> (d) d Which indicator can be used in the t	4.06 <i>litre</i> 76.
00.	strong base	[CBSE PMT 1988]
	(a) Only phenolphthalein (b) (Only methyl orange
	(c) Either of the two (d) I	Red litmus
67.	The indicator used in titrating weak a strong base (<i>e.g.</i> caustic soda) solution i	
	. ,	EE 1985; CPMT 1990; MNR 1980; 77. NCERT 1973, 77; MP PMT 1994]
	(a) Methyl orange (b) /	Methyl red
		Phenolphthalein
68.	The pink colour of phenolphthalein in a	lkaline medium is
		[CPMT 1990]
	(a) Due to negative form	-9
	(b) Due to positive form	78.
	(c) Due to OH^- ions	
	(d) Due to neutral form	
69.	Phenolphthalein does not act as an between	indicator for the titration [NCERT 1976] 79.
	(a) KOH and H_2SO_4	
	(b) $Ba(OH)_2$ and HCl	
		0.5

acid solution. The equivalent weight of the acid is

(b) 64

(d) 62.50

NaOH and acetic acid (c)

59.

(a) 65

(c) 63.80

(d) Oxalic acid and $KMnO_4$

0.1914g of an organic acid is dissolved in approx. 20 ml of water. 25 If we use phenolphthalein as an indicator in a titration of 70. ml of 0.12 N NaOH required for the complete neutralization of the Na_2CO_3 with HCl, the usual result is [MP PET 2000] (a) No visible change will occur (a) (b) The indicator reacts with the acid (c) The indicator reacts with the base [CPMI 1936d79h chloride and carbonic acid will be formed

Methyl orange gives red colour in

(a) Sodium carbonate solution Sodium chloride solution

(b)

Hydrochloric acid solution (c) [DPMT 1984] Potassium hydroxide solution (d) A 0.1 N solution of Na_2CO_3 is titrated with 0.1 N HCl solution. 72. The best indicator to be used is [NCERT 1971; DPMT 1983; AFMC 1992; CPMT 1983, 97] (a) Potassium ferricyanide (b) Phenolphthalein (c) Methyl red (d) Litmus paper When $KMnO_4$ solution is titrated with a solution containing 73. Fe^{2+} ion, the indicator used in this titration is [CPMT 1989; AIIMS 1996] (a) Phenolphthalein (b) Methyl orange (c) $K_3 \left[Fe(CN)_6 \right]$ (d) None of these The strength of a solution (S) in gram/litre, is related to its 4. normality (N) and equivalent weight of solute (e) by the formula E N (L) C $\langle \rangle$ c

(a)
$$S = \frac{1}{E}$$

(b) $S = \frac{1}{N}$
(c) $S = N.E$
(d) All of the

The normality of 1 M solution of H_3PO_4 will be

[MNR 1985; UPSEAT 2000]

[CBSE PMT 1989]

[NCERT 1972]

(a) 1 N (b) 0.5 N (c) 2 N (d) 3 N

In the reaction $I_2 + 2S_2O_3^- \rightarrow 2l^- + S_4O_6^{2-}$; the equivalent 6. weight of iodine will be equal to

- (a) Molecular weight
- (b) 1/2 the molecular weight
- (c) 1/4 the molecular weight
- (d) Twice the molecular weight
- To what extent must a given solution of concentration of 40 mg 77. silver nitrate per *ml* be diluted to yield a solution of concentration of 16 $mg AgNO_3$ per ml[NCERT 1977]
 - (a) Each *ml* must be diluted to 2.5 *ml*
 - (b) To each *ml* of solution 2.5 *ml* of water should be added
 - (c) To 2.5 *ml* of solution 2 *ml* of water should be added
 - (d) To 1.5 ml of solution 1.5 ml of water should be added
- 10 ml of conc. H_2SO_4 (18 molar) is diluted to 1 litre. The 78. approximate strength of dilute acid could be [CPMT 1971] (a) 0.18 N (b) 0.36 N
 - (c) 0.09 N (d) 18.00 N
- For preparing one litre N/10 solution of H_2SO_4 , we need 79. H_2SO_4 [DPMT 1982]
 - (a) 98 gms (b) 10 gms
 - (c) 100 gms (d) 4.9 gms
- 80. What is the concentration of nitrate ions if equal volumes of 0.1 M AgNO3 and 0.1 M NaCl are mixed together
 - [NCERT 1981; CPMT 1983] (b) 0.2 *M*

Get More Learning Materials Here :

CLICK HERE

(a) 0.1 N

	(c) 0.05 <i>M</i> (d) 0.25 <i>M</i>
81.	To neutralise 10 ml of $M/5$ NaOH the volume of $M/20$ HCl
	required is [EAMCET 1980]
	(a) 10 <i>ml</i> (b) 15 <i>ml</i>
	(c) 40 <i>ml</i> (d) 25 <i>ml</i>
82.	To change the strength of 25 ml of 0.15 M HCl to 0.1 M the
	quantity of water that is to be added is [EAMCET 1979]
	(a) $37.5 ml$ (b) $12.5 ml$
_	(c) 25.0 <i>ml</i> (d) 18.75 <i>ml</i>
83.	The volume of 0.1 $M\ H_2SO_4$ that is needed to completely
	neutralise 40 ml of 0.2 M NaOH is [EAMCET 1979]
	(a) 10 ml (b) 20 ml
.	(c) 40 ml (d) 80 ml
84.	What volume of water is to be added to 50 ml of 4 N NaOH solution to obtain a 1 N solution [MP PET 2002]
	(a) 100 m/ (b) 150 m/
	(c) $200 ml$ (d) $250 ml$
85.	In alkaline condition <i>KMnO</i> reacts as follows,
	$2KMNO + 2KOH \rightarrow 2KMnO + HO + O.$
	The <i>eq. wt.</i> of <i>KMnO</i> is [DPMT 2000]
	(a) 79 (b) 31.6
	(c) 158 (d) 52.7
86.	When a standard solution of NaOH is left in the air for a few hours,
	(a) A precipitate will form.
	(b) Strength will decrease.
	(c) The concentration of Na^+ ions will decrease.
	(d) All are wrong.
87.	In the iodometric estimation in laboratory, which process is involved [Orissa IEE 2004]
	[[[[]]]]]
	(a) $Cr^2 O_7^{2-} + H^+ + \Gamma \rightarrow 2Cr^{3+} + I_2,$
	$I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + \Gamma$
	(b) $MnO_4^- + H^+ + I^- \rightarrow MnO_2 + I_2$
	$I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + \Gamma$
	(c) $MnO_4^- + OH^- + \Gamma \rightarrow MnO_2 + I_2$
	$I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + \Gamma$
	(b) $G = 0^{2-}$ $G = 0^{3+}$ $F = 0^{3+}$ $F = 0^{3+}$

 $Cr_2O_7^{2-} + OH^- + I^- \rightarrow 2Cr^{3+} + I_2$ (d)

$$I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + I^-$$

88. What is the volume of 0.1 N-HCl required to react completely with 1.0 gm of pure calcium carbonate.

[DPMT 2004]

(a)	$100 cm^3$	(b)	$150 cm^3$
	2		2

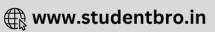
(c)	$250 cm^3$	(d)	$200 cm^3$
-----	-------------	-----	-------------

- 89. The weight of a residue obtained by heating $2.76 \ g$ of silver carbonate is [Pb. PMT 2004] (a) 2.76 g (b) 2.98 g
 - (c) 2.16 g (d) 2.44 g
- What is the molarity of H_2SO_4 solution if 25 ml is exactly 90. neutralised with 32.63 ml of 0.164 M, NaOH [DCE 2003]
 - (a) 0.107 M (b) 0.126 M (c) 0.214 M
 - (d) -0.428 M
- Weight of $Ca(OH)_2$ needed to prepare 250 ml of solution with pH 91. [BVP 2004] = 13 (b) 0.0125 g (a) 0.925 g

(c) 0.25 g (d) 1 g 92. What will be the volume of a 12 M solution, if it is equivalent to 240 ml 18 M solution [BVP 2004] (a) 6 litre (b) 600 *litre* (c) 400 *litre* (d) 0.36 *litre* The volume of $\frac{N}{10}$ NaOH require to neutralise 100 ml of $\frac{N}{25}$ HCl 93. [Pb. CET 2000] (a) 30 ml (b) 100 ml (c) 40 ml (d) 25 ml The volume of 0.6 *M NaOH* required to neutralise 30 cm^3 of 0.4 94. M HCl is [Pb. CET 2001] (a) 40 cm^3 (b) 30 cm^3 (c) 20 cm^3 (d) 10 cm^3 Solubility of iodine in water may be increased by adding 95. [DCE 2004] (a) Chloroform (b) Potassium iodide (c) Carbon disulphate (d) Sodium Thiosulphate If 30 ml of H_2 and 20 ml of O_2 reacts to form water, what is left 96. at the end of the reaction [Kerala PMT 2004] [AFMC 2005] (a) 10 ml of H_2 (b) 5ml of H_2 (c) 10 ml of O_2 (d) 5ml of O_2 The primary standard solution for estimation of $Na_2S_2O_3$ is 97. (a) I_2 solution (b) $KMnO_4$ (c) $K_2 C r_2 O_7$ (d) Oxalic acid

Acidic solution of $S_2 O_3^{2-}$ is converted to in presence of I_2 98.

(a) $S_4 O_6^{2-} + I^-$ (b) $SO_4^{2-} + I^-$ (d) $S_4 O_6^{2-} + I_3^{-}$ (c) $SO_3 + I^-$


- 1. A white solid 'A' on heating gives off a gas which turns lime water milky. The residue is yellow when hot but turns white on cooling. This solid 'A' is [MP PMT 1999]
 - (a) Zinc sulphate (b) Zinc carbonate
 - (c) Lead sulphate (d) Lead carbonate
- A salt on treatment with dil. HCl gives a pungent smelling gas and 2. a yellow precipitate. The salt gives green flame when tested. The salt solution gives a yellow precipitate with potassium chromate. The salt [MP PET 1996] is

(a)
$$NiSO_4$$
 (b) BaS_2O_3

(c)
$$PbS_2O_3$$
 (d) $CuSO_4$

- The salt used for performing 'bead' test in qualitative inorganic з. analysis is [UPSEAT 2001]
 - (a) $K_2 SO_4 . Al_2 (SO_4)_3 . 24H_2 O$
 - (b) $FeSO_4.(NH_4)_2SO_4.6H_2O$ (c) $Na(NH_4)HPO_4.4H_2O$
 - (d) $CaSO_4 2H_2O$

CLICK HERE

4.	Where chlorine water is added to an aqueous solution	of potassium
	halide in presence of chloroform, a violet colour is o	btained. On
	adding more of chlorine water, the violet colour disap	pears, and a
	colourless solution is obtained. This test confirms the	presence of
	the following in aqueous solution	[CPMT 1990]

- (a) lodide (b) Bromide (c) Chloride (d) lodide and bromide
- Upon the addition of a solution A to a strongly acidified solution of 5. barium nitrate, a white precipitate was obtained which did not dissolve even after large addition of water. Solution A contained
 - (a) Sodium phosphate (b) Sodium carbonate (d) Sodium chloride (c) Sodium sulphate
- To an acid solution of an anion a few drops of $KMnO_4$ solution 6. are added. Which of the following, if present will not decolourise the $KMnO_4$ solution [MP PMT 1997]
 - (b) S^{2-} (a) NO_2^-
 - Cl^{-} (d) CO_3^{2-} (c)
- The brown ring test for NO and NO_3^{-1} is due to the formation of 7. complex ion with the formula
 - [KCET (Eng./Med.) 2000; Kerala PMT 2004]

(a)	[Fe(H,O)]	(b)	$[Fe(NO) (CN)]^{n}$
(c)	$[Fe(H,O), NO]^{n}$	(d)	[Fe(HO) (NO)]

8. Mixture is heated with dil. H_2SO_4 and the lead acetate paper turns black by the evolved gases. The mixture contains

	-	-		
(a)	Sulphite		(b)	Sulphide
(c)	Sulphate		(d)	Thiosulphate

- To a solution of a substance, gradual addition of ammonium 9. hydroxide results in a black precipitate which does not dissolve in excess of NH 4 OH . However, when HCl is added to the original solution, a white precipitate is formed. The solution contained[**BHU 1973**]
 - (a) Lead salt (b) Silver salt
 - (c) Mercurous salt (d) Copper salt
- If NaOH is added to an aqueous solution of zinc ions, a white 10. precipitate appears and on adding excess NaOH, the precipitate dissolves. In this solution zinc exists in the

[NCERT 1981; MP PET 1993]

(a) Cationic part

- (b) Anionic part
- Both in cationic and anionic parts (c)
- (d) There is no zinc in the solution
- 11. On performing a borax-bead test with a given inorganic mixture for qualitative analysis, the colour of the bead was found to be emerald green both in oxidising and reducing flame. It indicates the possibility of the presence of [MP PMT 2001]

(a)	Co	(b)	Ni
(c)	Cr	(d)	Cu

A red solid is insoluble in water. However it becomes soluble if some 12. KI is added to water. Heating the red solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on the cooler parts of the test tube. The red solid is[AIEEE 2003] (a) (*NH*) *CrO* (b) *Hgl*

(c)
$$HgO$$
 (d) PbO

- An aqueous solution of $FeSO_4$, $Al_2(SO_4)_3$ and chrome alum is 13. heated with excess of Na_2O_2 and filtered. The materials obtained
 - are [IIT 1996] (a) A colourless filtrate and a green residue
 - (b) A yellow filtrate and a green residue
 - (c) A yellow filtrate and a brown residue
 - (d) A green filtrate and a brown residue

Phosphoric acid (H_3PO_4) is tribasic acid and one of its salts is 14. sodium dihydrogen phosphate (NaH_2PO_4) . What volume of 1 M NaOH solution should be added to 12 g of sodium dihydrogen phosphate (mol. wt. 120) to exactly convert it into trisodium phosphate Na_3PO_4

				[Kurukshetra	CET 1998]
(a)	80 <i>ml</i>		(b)	100 <i>ml</i>		
	200 ml	_		300 <i>ml</i>		
Thr	ee sepafate	1971 Samples o	of a solution	of a single	e salt gave	these test
resu	lts : One	formed a	white prec	ipitate wi	ith excess	ammonia

solution, one formed a white precipitate with dil. NaCl solution

and one formed a black precipitate with H_2S . The salt could be[Pb. PMT 1998 (b) $Pb(NO_3)_2$ (a) $AgNO_3$ (c) $Hg(NO_3)_2$ (d) $MnSO_4$

15.

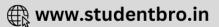
10

20.

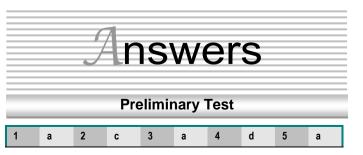
- 10 ml of concentrated HCl were diluted to 1 litre. 20 ml of this 16. diluted solution required 25 ml of 0.1 N sodium hydroxide solution for complete neutralization, the normality of the concentrated hydrochloric acid will be
 - (a) 8.0 (b) 9.5 (c) 12.5 (d) 15.0
- To a 25 ml of HO solution, excess of acidified solution of Kl was 17. mixed. The liberated 1 require 20 ml of 0.3M hypo solution for neutralization. The volume strength of HO will be [MP PET 2003] (a) 1.34 ml (b) 1.44 ml (c) 1.60 ml (d) 2.42 ml 18. A chemistry student trying to detect the metallic ion in a salt, makes a paste on a clean platinum wire loop of the salt with concentrated
 - HCl. When he takes a small amount of this paste and keeps it in a non-luminous Bunsen flame, the colour of the flame changes to grassy green. He should, therefore, conclude that the metal is[Manipal MEE 1995 (a) Barium (b) Calcium
 - (c) Potassium (d) Strontium
 - A white crystalline substance dissolves in water. On passing H_2S in this solution, a black precipitate is obtained. The black precipitate dissolves completely in hot HNO_3 . On adding a few drops of conc.

 H_2SO_4 a white precipitate is obtained. This precipitate is that of [CPMT 1990]

- (a) $BaSO_4$ (b) $SrSO_4$
- (c) $PbSO_{4}$ (d) $CdSO_4$
- The best explanation for the solubility of MnS in dil. HCl is that[UPSEAT 2001]
- Solubility product of MnCl is less than that of MnS (a)
- Concentration of Mn is lowered by the formation of complex (b) ions with chloride ions
- Concentration of sulphide ions is lowered by oxidation to free (c) sulphur
- (d) Concentration of sulphide ions is lowered by formation of the weak acid HS


Reason & Reason For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :


- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- *(b)* If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d)If the assertion and reason both are false.
- If assertion is false but reason is true. (e)

Get More Learning Materials Here :

1.	Assertion	:	Lime water becomes turbid on passing CO_2 but becomes clear on passing more CO_2 .
	Reason	:	Lime water is calcium hydroxide, $Ca(OH)_2$.
2.	Assertion	:	[AIIMS 2000] $Sb(111)$ is not precipitated as sulphide when in its alkaline solution H_2S is passed.
	Reason	:	The concentration of S^{2-} ion in alkaline medium is inadequate for precipitation.
3.	Assertion	:	[AlIMS 2004] CuS will give H_2S in dilute acid test.
0.	Reason		
	RedSOIL	:	All sulphides react with dil. H_2SO_4 , on heating, to give H_2S .
4.	Assertion	:	$PbCl_2$ will give HCl in conc. H_2SO_4 test.
	Reason	:	All chlorides react with conc. H_2SO_4 , on heating, to give HCl
5.	Assertion	:	$ZnCO_3$ will not give any gas when treated with conc. H_2SO_4 .
	Reason	:	CO_3^{2-} can only be detected in dil. acid test.
6.	Assertion	:	<i>CdS</i> is yellow in colour.
	Reason	:	<i>Cd</i> salts are yellow in colour.
7.	Assertion	:	A brown gas which intensifies on adding Cu- turnings in conc. H_2SO_4 test is NO_2 .
	Reason	:	Copper reacts with conc. HNO_3 to give NO_2 .
8.	Assertion	:	CuS is blue in colour.
	Reason	:	All Cu^{2+} salts are blue in colour.
9.	Assertion	:	Acidified $K_2Cr_2O_7$ is turned green when SO_2 is passed through it.
	Reason	:	In this reaction SO_2 acts as a reducing agent.
10.	Assertion	:	White ppt. of $AgCl$ is soluble in NH_4OH .
	Reason	:	It is due to the formation of soluble complex.
11.	Assertion	:	All soluble sulphides gives white ppt. with $BaCl_2$ solution.
	Reason	:	BaS is insoluble in water.
12.	Assertion	:	A solution of $BiCl_3$ in conc. HCl when diluted with water gives white ppt.
	Reason	:	$BiCl_3$ in insoluble in dil. HCl .
13.	Assertion	:	Addition of NH_4OH to an aqueous solution of
			$BaCl_2$ in the presence of NH_4Cl (excess) precipitates $Ba(OH)_2$.
	Reason		$Ba(OH)_2$ is insoluble in water.
	11645011	:	[AllMS 2005]

6	d	7	d	8	b	9	C	10	C
11	d	12	а	13	d	14	b	15	a
16	b	17	C	18	b	19	а	20	b
21	b	22	b	23	а				

Get More Learning Materials Here : 💻

Wet Test for Acid Radical

1	abd	2	С	3	b	4	d	5	с
6	a	7	b	8	d	9	a	10	b
11	b	12	d	13	C	14	C	15	C
16	b	17	C	18	а	19	b	20	a
21	C	22	d	23	d	24	C	25	b
26	C	27	b	28	b	29	b	30	а
31	а	32	C	33	а	34	b	35	а
36	b	37	а	38	а	39	d	40	b
41	а								

Wet Test for Basic Radical

1	b	2	b	3	b	4	b	5	b
6	b	7	C	8	а	9	d	10	b
11	d	12	d	13	C	14	d	15	a
16	b	17	a	18	b	19	C	20	a
21	abcd	22	bcd	23	C	24	C	25	b
26	a	27	a	28	a	29	b	30	d
31	b	32	C	33	d	34	C	35	d
36	b	37	C	38	C	39	d	40	b
41	C	42	b	43	d	44	а	45	b
46	b	47	b	48	a	49	a	50	C
51	a	52	d	53	a	54	C	55	a
56	a	57	d	58	a	59	C	60	b
61	a	62	d	63	d	64	b	65	d
66	C	67	b	68	С	69	a	70	b
71	С	72	b	73	C	74	d	75	d
76	b	77	d	78	d	79	С	80	d
81	b	82	d	83	a	84	C	85	a
86	С	87	b	88	С	89	а	90	d
91	C	92	a	93	C	94	а	95	b
96	a	97	b	98	C	99	d	100	a
101	a	102	b	103	a	104	C		

Volumetric Analysis

1	c	2	c	3	b	4	с	5	а
6	а	7	d	8	C	9	b	10	b
11	а	12	а	13	а	14	а	15	d
16	b	17	b	18	С	19	d	20	a
21	b	22	d	23	а	24	а	25	a
26	d	27	C	28	d	29	c	30	c
31	d	32	b	33	C	34	b	35	a
36	с	37	b	38	d	39	а	40	b

41	d	42	b	43	c	44	a	45	d
46	C	47	C	48	С	49	a	50	C
51	b	52	b	53	b	54	d	55	а
56	C	57	d	58	b	59	С	60	b
61	d	62	b	63	а	64	d	65	а
66	C	67	d	68	а	69	d	70	а
71	с	72	c	73	d	74	C	75	d
76	b	77	а	78	b	79	d	80	С
81	C	82	b	83	C	84	b	85	С
86	b	87	b	88	d	89	C	90	a
91	а	92	d	93	C	94	C	95	b
96	d	97	a	98	а				

Critical Thinking Questions

1	b	2	b	3	с	4	а	5	c
6	d	7	с	8	b	9	с	10	d
11	c	12	b	13	c	14	с	15	а
16	С	17	а	18	а	19	С	20	d

Assertion and Reason

1	b	2	c	3	d	4	d	5	е
6	c	7	а	8	d	9	а	10	а
11	е	12	C	13	b				

Answers and Solutions

Preliminary Test

 $\textbf{a} \quad \textbf{(a)} \quad Na_2B_4O_7.10H_2O \xrightarrow[-10]{-10}{H_2O} \rightarrow Na_2B_4O_7$

$$\xrightarrow{\Delta} 2NaBO_2 + B_2O_3$$

$$CuO + B_2O_3 \rightarrow Cu(BO_2)_2$$

(Copper meta borate blue)

- (c) Borax bead test is generally given by transition elements.
- **5.** (a) Ba^{2+} imparts green colour to the flame.
 - (d) As Mn^{+2} has all it's electrons (5) unpaired in it's *d*-orbital, so it's extra stable configuration requires high excitation energy and so it gives violet colour.

(b)
$$2NO + O_2 \rightarrow 2NO_2$$

(Deep brown gas)

- **9.** (c) $CoAlO_2$ is formed which is blue. Follow cobalt nitrate-charcoal test.
- 10. (c) Metals which form basic compounds and have coloured salts give the borax bead test.

2.

6.

8.

n. (d)
$$2KNO_3 + H_2SO_4 \rightarrow 2KHSO_4 + 2NO_2 \uparrow_{\text{(Brown gas)}}$$

- 12. (a) Barium salt gives green coloured flame as it has low ionization energy
- 13. (d) Calcium oxalate will not dissolve in acetic acid (weak acid) but only in strong acid
- $14. (b) Na_2S + dil.2HCl \rightarrow 2NaCl + H_2S$

$$H_2S + H_2SO_4 + K_2Cr_2O_7 \xrightarrow{\text{acidic}} K_2SO_4$$

$$+ Cr_2(SO_4)_3 + S$$
(green)

9

13.

16.

20

CLICK HERE

15. (a) Starch lodide paper is used for the test of lodine, as Starch + Iodine \rightarrow Starch Iodide

16. (b) Flame colour of *Ba* salt is green

$$2AgNO_3 + BaCl_2 \rightarrow 2AgCl + Ba(NO_3)_2$$
.
White ppt.

17. (c)
$$NH_3 + HCl \rightarrow NH_4Cl$$

dense white fumes

18. (b)
$$CoO + B_2O_3 \xrightarrow{\text{Heat}} Co(BO_2)_2$$

Copper metabrate (blue)

- 20. (b) In laboratory burners, oil gas is generally used. Oil gas is mixture of $CH_4 + CO + CO_2 + H_2$
- **21.** (b) $H_2S \rightarrow$ colourless gas with unpleasant odour of rotten eggs.

 $SO_{\,2}$ $\rightarrow\,$ colourless gas with a pungent suffocating odour

 $PH_3 \rightarrow {\rm colourless}$ gas with unpleasant garlic like odour or rotten fish odour.

22. (b)
$$NO(g) + NO(g) \xrightarrow{-30^{\circ}C} NO(f)$$

(BLUE)

23. (a) Yellowish-green gas of chlorine with sufocating odour is evolved when the solid chloride mixed with manganese dioxide is heated with concentrated H_2SO_4 .

 $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$ $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$

Wet Test for Acid Radical

(abd) Chromyl chloride test $4NaCl + K_2Cr_2O_7 + 3H_2SO_4 \xrightarrow{\text{heat}} K_2SO_4 + 2Na_2SO_4 + 2CrO_2Cl_2 + 3H_2O_{\text{chromyl chloride(orange red)}}$ $4NaOH + CrO_2Cl_2 \rightarrow 2NaCl + Na_2CrO_4 + 2H_2O_{\text{Sod. chromate (Yellow)}}$ $Na_2CrO_4 + (CH_3COO)_2Pb \rightarrow 2CH_3COONa + COONA + COON$

 $\begin{array}{c} PbCrO_4 \downarrow \\ Lead chromate \\ (yellow ppt.) \end{array}$

- 2. (c) Starch is colourless but Starch + Iodine→ Starch Iodine (violet)→ (blue-black)
- 3. (b) Brown ring test with (FeSO, NO)

1.

7

4. (d)
$$Na_4[Fe(CN)_5 NO] + S^{2-} \rightarrow Na_4[Fe(CN)_5 NOS]$$

Sodium thio nitropruside
(violet)

6. (a) With F⁻, no precipitate is obtained because of low lattice energy of AgF, so it remains in ionized state
7. (b) NeCL+ H. SO = NEHEO = HCL

(b)
$$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$$

 $K_2Cr_2O_7 + 2H_2SO_4 \rightarrow 2KHSO_4 + 2CrO_3 + H_2O$
 $CrO_3 + 2HCl \rightarrow CrO_2Cl_2$
(orange red vapour)

8. (d)
$$CrO_2Cl_2 \xrightarrow{NaOH} Na_2CrO_4 \xrightarrow{CH_3COOH} CH_3COOP_b$$

$$[(CH_3COO)_2Pb] \xrightarrow{CrO_2Cl_2} \rightarrow PbCrO_4$$
vellow pot.

(a)
$$2AgNO_3 + H_2S \rightarrow Ag_2S + 2HNO_3$$

Black ppt.

10. (b) lodine vapours are violet \therefore the salt must contain I^- as $KI + H_2SO_4 \rightarrow KHSO_4 + HI$

$$2HI + H_2SO_4 \rightarrow I_2 + 2H_2O + SO_2$$
violet vapour

11. (b) As Cl^- is more electronegative than Br^- and $I^ \therefore$ it replaces them from their salt as $2I^- + Cl_2 \rightarrow I_2 + 2Cl^- \Rightarrow$ Violet vapour

 $2Br^{-} + Cl_2 \rightarrow Br_2 + 2Cl^{-} \Rightarrow$ Brown vapour

- 12. (d) The salt must have SO_4^{2-} group which is also present in the acid so reaction is not takes place.
 - (c) Phosphates give canary yellow precipitate with ammonium molybdate in the presence of conc. HNO₃

$$H_3PO_4 + 12(NH_4)_2MoO_4 + 21HNO_3$$

$$(NH_4)_3 PO_4.12MoO_3 + 21NH_4 NO_3 + 12H_2O_3$$

ammonium phosphomo lybdate
(canary yellowppt.)

- 15. (c) Nitrates and acetates of all metals are water soluble.
 - (b) When NO_3^- is passed through $FeSO_4$ (neutral) and then few drops of conc. H_2SO_4 is added then the brown ring is obtained.

$$FeSO_4 + NO \rightarrow Fe(NO)SO_4$$

(Brown ring)
Nitroso Ferrousulp hate

- 17. (c) AgCl and AgBr dissolve in NHOH and form complexes but Agl doesn't react with NHOH. e.g. $AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2]Cl + 2H_2O$ complex
- **18.** (a) When Cl^- , Br^- and F^- are treated with $AgNO_3$ solution in presence of dilute HNO_3 , corresponding silver halide is obtained which is soluble in NH_4OH , *NaCN*, and $Na_2S_2O_3$.

$$AgNO_{3} + NaCl \longrightarrow AgCl \downarrow + NaNO_{3}$$

$$AgCl + dil2NH_{4}OH \longrightarrow [Ag(NH_{3})_{2}]Cl + 2H_{2}O$$

complex

19. (b) $Ca(OH)_2 + CO_2 \longrightarrow CaCO_{3(S)} + H_2O$ lime water white precipitate

$$CaCO_3 + CO_2(\text{excess}) + H_2O \longrightarrow Ca(HCO_3)_2$$

0. (a) It is a lab method for the preparation of
$$Br_2$$
 e.g.
 $2 KBr + MnO_2 + H_2SO_4 \rightarrow Br_2 + 2 KHSO_4 + MnSO_4$
Brown gas

21. (c)
$$Na_2SO_3 + 2HCl(dil) \rightarrow 2NaCl + H_2O + SO_2$$
,
 $K_2Cr_2O_2 + H_2SO_4 + 3SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$
(Green)

🕀 www.studentbro.in

Get More Learning Materials Here : 📕

- 22. (d) As the sulphate radical is a strong oxidising agent, it is insoluble in acids and so detection of sulphate radicle requires no other reagent.
- (d) Sulphite radicle will give a burning sulphur odour. Acetate radical will give a sweet, venegar odour. Nitrite will give a reddish brown gas. Carbonate will give a colourless, odourless gas, *i.e. CO*.
- 24. (c) $PbSO_4$ and $PbCl_2$ are insoluble in cold water hence the reagent $Pb(NO_3)_2$ is used to remove SO_4^{2-} and Cl^{-}

25. (b)
$$2KI + 2H_2SO_4$$
 (Conc.) $\rightarrow 2KHSO_4 + 2HI$
 $MnO_2 + H_2SO_4 \rightarrow MnSO_4 + H_2O + (O)$
 $2HI + (O) \rightarrow H_2O + I_2$
 $2KI + MnO_2 + 3H_2SO_4 \rightarrow I_2 + MnSO_4 + 2H_2O$

- 26. (c) It is a test for chloride ion.
- 27. (b) Dil. HSO doesn't react with chloride but reacts with peroxide
- **28.** (b) Ba(OH) is not highly basic and bond is not easily broken
- **29.** (b) Ozone react with *KI* solution to liberate I_2 gas.
- **30.** (a) $2KBr + MnO_2 + 3H_2SO_4 \rightarrow MnSO_4 + 2KHSO_4$

$$+2H_2O+Br_2\uparrow$$

(reddish
brown gas)

 $+2KHSO_4$

34. (b)
$$2KMnO_4 + 3H_2SO_4 + 5H_2S \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5S_4$$

35. (a)
$$3FeSO_4 + NO_2 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + FeSO_4.NO + H_2O$$

36. (b) As most of the nitrates are soluble in water.

37. (a) $SO_3^{2^-}, S^{2^-}$ and $SO_4^{2^-}$ salts from comparatively stronger acids (than H_2CO_3) in solution hence evolve CO_2 with Na_2CO_3 solution and give effervesence. While $CO_3^{2^-}$ does not react with Na_2CO_3 solution

38. (a)
$$Na_2CO_3 + 2H_2O \rightarrow 2NaOH + H_2CO_3$$

and $2NaOH \xrightarrow[(ionisation)]{} 2Na^+ + 2OH^-$

Hence, it is clear that $2OH^-$ ions will be formed on hydrolysis of one molecule of sodium corbonate.

39. (d) According to the equation, $Ca(OH)_2 + CO_2 \xrightarrow{\Delta} CaCO_3 + H_2O$ $CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$ $Ca(HCO_3)_2 \xrightarrow{\Delta} CaO + H_2O + 2CO_2$

Hence, the gas A and B are CO_2 and CO_2 respectively

- **40.** (b) $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5S + 8H_2O_4$
- **41.** (a) It doesn't provide free Br^- ions to react with $AgNO_3$.

Wet Test for Basic Radical

- **1.** (b) As S forms complex with $(NH_4)_2 CO_3$
- **2.** (b) $Cu(NH_3)_4(NO_3)_2 + 4CH_3COOH \rightarrow Cu(NO_3)_2 + 4CH_3COONH_4$

$$2Cu(NO_3)_2 + K_4[Fe(CN)_6] \rightarrow Cu_2Fe(CN)_6 + 4KNO_3$$

- (b) $SnS + (NH_4)_2 S_2 \xrightarrow{HCl} (NH_4)_2 S + SnS_2$
- 4. (b) For the solution to become milky H_2S must be oxidised to SO_2
- (b) HNO oxidises Fe to Fe otherwise Fe is not completely precipitated as hydroxide
- **6.** (b) Sr^{2+} give bright red colour to the flame
- (c) Calcium oxalate will not dissolve in acetic acid (weak acid) but only in strong acid

8. (a)
$$2Hg + 2HCl \rightarrow Hg_2Cl_2 + H_2$$
 white ppt.

(d) It is an acidic salt

3.

٩.

11.

14.

19.

4

CLICK HERE

10. (b) In presence of *NHOH*, dissociation of *HS* is remarkably high so increases the solubility product of $1V^*$ group sulphides $H_2S \Box 2H^+ + S^{2-}$

$$NH_4OH \rightarrow NH_4^+ + OH_4$$

$$OH^- + H^+ \rightarrow H_2O$$

- (d) As cadmium belongs to the II⁻ group and is precipitated as sulphide and not as chloride.
- (d) Aluminium is in III group and is precipitated as hydroxide [Al(OH)₃].
- 13. (c) Due to common ion effect as

$$HCl \rightarrow H^+ + Cl^-; \quad H_2S \rightarrow 2 H^+ + S^{2-}.$$

- (d) Oxalate of these metals are insoluble
- **15.** (a) Both will precipitate as sulphide.
- 16. (b) Both Pb and Ag form white ppt. of their chlorides. But $PbCl_2$ is soluble in hot water while AgCl does not dissolve in hot water.

black ppt.

🕀 www.studentbro.in

(c)
$$(CH_3COO)_2Pb + H_2S \rightarrow 2CH_3COOH + PbS \downarrow$$

20. (a) $(NH_4)SCN$ is a red colour substance.

21. (abcd)
$$FeCl_3 + K_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6]_3$$

Ferri ferroc vanide (Blue)

$$\begin{array}{c} 2FeCl_3 + 3H_2S \rightarrow Fe_2S_3 + 6HCl \\ 3NH_4CNS + FeCl_3 \rightarrow Fe(CNS)_3 + 3NH_4Cl \\ (Blood red) \\ FeCl_3 + 3KCNS \rightarrow Fe(CNS)_3 + 3KCl \\ (Blood red) \\ \end{array}$$

- **24.** (c) (Conc. $H_2SO_4 + K_2Cr_2O_7$) mixture is called as chromic acid.
- 26. (a) $NaCl > MgCl_2 > Na_2S > MgS$ Solubility decreasing order
- **30.** (d) Cobalt sulphide does not ppt. in second group.

36. (b)
$$BaCO_3 + 2HCl \rightarrow BaCl_2 + H_2O + CO_2$$

$$ZnS + 2 \underset{(\text{dil.})}{HCl} \rightarrow ZnCl_2 + H_2S$$

37. (c) Cd^{2+} is not precipitated by H_2S in concentrated acid solution that is why the solution is diluted before passing H_2S through it.

39. (d)
$$AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl = [Ag(NH_3)_2]^+ + Cl^-$$

0. (b)
$$Fe^{3+} + K_4[Fe(CN)_6] \rightarrow K[Fe(Fe(CN)_6]] + 3K^+$$

Prussian blue

41. (c) As Na_2CO_3 is a strong electrolyte it will cause the precipitation of *MgCO*. So (*NH*) *CO* is used as it's a weaker electrolyte than Na_2CO_3 .

- **42.** (b) As the concentration of OH^- ions is less due to common ion effect but enough to precipitate the III- group radicals as hydroxides, as the solubility product of III group hydroxides is lower than IV, V and VI group hydroxides.
- **44.** (a) As *NHCl* is a strong electrolyte. It supresses the ionization of *NHOH*, so the concentration of OH^- ions in the solution is decreased, but it is sufficient to precipitate the III group basic radicals because the solubility product of III group hydroxides is lower than IV, V and VI group hydroxides. As

$$\begin{array}{ccc} \textit{NH},\textit{OH} \square & \textit{NH}_{+} + \textit{OH} \\ \textit{NH},\textit{Cl} \rightarrow & \textit{NH}_{4}^{+} + \textit{Cl}^{-}_{\text{Common ion effect}} \end{array}$$

45. (b)
$$4FeCl_3 + 3K_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6]_3 + 12KCl$$

Prussian
Blue colour

- **46.** (b) ZnS is white.
- **47.** (b) $Sb_2S_3 + 2(NH_4)_2S_2 \rightarrow 2(NH_4)_2S + Sb_2S_5$
- (a) The second group radicals will precipitate because their solubility product is very low so sulphates will be precipitated.
 (a) As *Pb(NO)* is an ionic compound so the reaction is easy.
- $Pb(NO) + 2NaCl \rightarrow 2NaNO_3 + PbCl_2$, but Ba(NO) has a higher lattice energy, so no reaction takes place.
- **50.** (c) $4 NH_4 OH + CuSO_4 \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O_{(excess)}$

51. (a)
$$CuCl_2 + H_2S \rightarrow CuS + 2HCl_{(Black ppt)}$$

- **52.** (d) As they have low K_{τ} value.
- 53. (a) NH_4^+ ions are required to supress the ionization of NHOHbut sufficient to precipitate the III group radicals. (*NH*) SO can't be used as SO_4^{2-} ions will precipitate *Ba* as *BaSO*
- **54.** (c) White precipitate obtained is of $BaCl_2$, as the Cl^- ion's concentration increases due to the addition of *HCl*, the ionic product becomes more than solubility product and thus, *BaCl* is precipitated
- **55.** (a) $HgS + HNO_3 \rightarrow No$ reaction
- 56. (a) *Pb* as it's precipitated as chloride and sulphide in 1⁻ and 11⁻ group respectively
- **57.** (d) As *Bi*(*SO*), is a covalent compound with high lattice energy and hence it is insoluble in water.
- **58.** (a) The solution must contain Nt^{+2} as it forms a complex with DMG giving $[Ni(DMG)_2]$ which is red in colour.

59. (c)
$$BiCl_3 + H_2O \rightarrow BiOCl + 2HC$$

(white ppt)

60. (b)
$$Hg_2Cl_2 + 2NH_4OH \rightarrow \underbrace{NH_2 - Hg - Cl}_{(Black pp)} + Hg_{(Black pp)} + NH_4Cl + 2H_2O$$

- **61.** (a) Colour of anhydrous *COCI* is blue and when it comes in contact with moisture then it turns in pink.
- **62.** (d) When $(NH)_{,CO}$ is used then the concentration of CO_3^{2-} is comparatively low but when $Na_{,CO}$ is added then concentration of CO_3^{2-} increases so Mg^{2+} will be precipitated along with other 5° group radicals

63. (d) Nessler's reagent gives red precipitate with
$$NH_4^+$$

 $NH_4Cl + 2K_2[HgI_4] + 4KOH \rightarrow$
 $NH_2 - Hg - O - Hg - I + 7KI + KCl + 3H_2O$
Iodide of Millon's base (Brown ppt)

64. (b) FeS is soluble in HCl. Also Fe^{2+} salts are green.

- **65.** (d) Cd^{+2} belongs to 11 A group while As^{+3} to 11 B. All the sulphides of 11 B are soluble in yellow ammonium sulphide but those of 11 A are insoluble.
- **66.** (c) As Fe(OH), is soluble in NaOH whereas Al(OH), is not.
- 67. (b) $NH_3 + H_2O \rightarrow NH_4OH$ due to common ion effect NH^+ ion concentration increases which leads to the

 NH_4^+ ion concentration increases which leads to the precipitation of $AI(OH)_2$

- **68.** (c) $CrCl_3$, as $Cr^{+3} \Rightarrow 3d^3$, has unpaired electron in *d*-orbital as a result it will show paramagnetism and thus forms coloured complexes.
- **69.** (a) *Cu* will be precipitated as *CuS* in acidic medium where as Ni^{2+} is not precipitated.
- **70.** (b) Even $SnCl_2$ added into $HgCl_2$ solution to give white gray colour.

76. (b)
$$Al^{+3} + (OH^{-})_3 \rightarrow Al(OH)_3$$

(white ppt.)
which is soluble in excess alkali.

77. (d) As the ionic product of Sb^{3+} and Bi^{3+} is very low and Cl^{-} is present in high concentration, therefore Sb and Bi get precipitated, as

$$Sb^{3+} + 3Cl \rightarrow SbCl_3$$

- **78.** (d) $Fe_3(PO_4)_2$ is insoluble in water.
- **79.** (c) Sulphide having high ionic product are completely precipitated in acidic medium. *CdS* has maximum ionic product hence it is completely precipitated.

80. (d)
$$3FeCl_2 + 2K_3[Fe(CN)_6] \rightarrow Fe_3[Fe(CN)_6]_2 + 6KCl$$

blue colour

83. (a)
$$Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

84. (c)
$$2CuSO_4 + 4KI \rightarrow 2CuI + 2K_2SO_4 + I_2$$

Cuprous iodide

85. (a) Ca, Ba, Sr these radicals are precipitated in basic medium.

88. (c)
$$Cu^{2+} + H_2 S \rightarrow CuS \downarrow_{\text{black ppt.}}$$

89. (a)
$$NHOH \square NH_4^+ + OH^-$$

 $NH_4Cl \rightarrow NH_4^+ + Cl^-$

 NHCI decreases the dissociation of NHOH by common ion effect

93. (c) *HCl* suppresses ionisation of weakly dissociated H_2S , with the result only the ionic product of the sulphides of group II radicals exceed their corresponding solubility product and hence only these are precipitated.

97. (b)
$$Cd^{++} + H_2S \rightarrow CdS_{\text{Yellowppt}} + H_2O$$

98. (c) Acidified solution of potassium permanganate. $Fe^{+2} \xrightarrow{KMnO_4} Fe^{+3}$

$$Fe^{+3} \xrightarrow{KMnO_4} No$$
 reaction

99. (d)
$$CuCl_2 + 2HNO_3 \rightarrow Cu(NO_3)_2 + 2HCl$$

 $Cu(NO_3)_2$ reacts with NH_4OH and gives $Cu(NH_3)_4^{2+}$ which has deep blue colour.

- 102. (b) $Bi(NO)(aq) + 3Kl(aq) \longrightarrow Bil(s)$ + 3KNO(aq) Black $Bil(s) + Kl(aq) \longrightarrow K[Bil]$ Orange colour
- 103. (a) HCl suppresses ionisation of weakly dissociated H_2S , with the result only the ionic product of the sulphides of group II

CLICK HERE

🕀 www.studentbro.in

radicals exceed their corresponding solubility product and hence only these are precipitated. $% \label{eq:constraint}$

 $Na_3[Fe(ONSNa)(CN)_5]$ or $Na_4[Fe(CN)_5NOS]$ violet coloured complex purple colour complex

Volumetric Analysis

1. (c)
$$0.1 = \frac{x \times 1000}{40 \times 100} \Rightarrow x = 0.45 \ gms$$

 $Na_2S + Na_2[Fe(NO)(CN)_5] \rightarrow$

sodium nitroprusside

- 2. (c) As methyl orange is a weak base.
- **3.** (b) Phenolphthalein is an indicator for strong base and weak acid, but *KMnO* oxidises it.

4. (c)
$$N_1 V_1 = N_2 V_2$$
, $\frac{1}{10} \times 15 = N_2 \times 12 \Longrightarrow N_2 = \frac{1}{8} N_1$

5. (a) In the neutralization of acid and base $N \times V$ of both must be equivalent

$$N \times V \text{ of } HCl = 0.1 \times 100 = 10$$

$$N \times V \text{ of } NaOH = 0.2 \times 30 = 6$$
as to obtain 10 $N \times V$ of base
$$4 N \times V \text{ of base is required}$$

$$N \times V \text{ of } KOH = 0.25 \times 16 = 4$$

$$NV = N \times V + N \times V$$

$$NaOH KOH$$

$$0.1 \times 100 = 0.2 \times 30 + 0.25 \times V$$

$$10 = 6 + 0.25 V$$

$$V = \frac{400}{0.25} \implies V = 16 ml$$

6. (a) 1 - 0.68 = 0.32 g oxygen

$$\frac{0.68}{eq.wt.} = \frac{0.32}{8} \implies eq.wt. = \frac{0.68 \times 8}{0.32} = 17$$

7. (d) $V_1 = 20 \ ml$, $N_1 = 0.25N$, $V_2 = 30 \ ml$ $N_2 = 0.2N$ $N_1 = N_1 V_1 + N_2 V_2 = 20(0.25) + 30(0.2)$

$$= \frac{5+6}{50} = \frac{11}{50} = 0.2N \text{ basic}$$

9. (b)
$$NV = NV \Rightarrow \frac{1}{10} \times 8 = N_2 \times 20, \quad \therefore N_2 = 0.04N$$

b. (b)
$$N = \frac{W_B \times 1000}{E \times V} \Longrightarrow \frac{N}{10} = \frac{x \times 1000}{63 \times 250}$$
$$\therefore x = 1.575 \, grams$$

Þ

11. (a)
$$NV = NV$$

 $15 \times 0.2 = 30 \times x$ $\therefore x = 0.1 N$
12. (a) $NV + NV = NV$
 $200 \times 0.6 + 100 \times 0.3 = N_3V_3$ and $V_3 = V_2 + V_1 = 300 ml$

$$\therefore N_3 = 0.5 N$$
13. (a) $10 M H_2 SO_4 \Rightarrow 20 N H_2 SO_4$

$$\therefore 20 \times 10 = 200 \text{ for } H_2 SO_4 \text{ and}$$
 $100 \times 1 = 100 \text{ for } NaOH$

14. (a)
$$0.1M \text{ of } H_2SO_4 \Rightarrow 0.2N \text{ of } H_2SO_4$$

 $\therefore NV = NV$ [$N = 2m$ for H_2SO_4]

0.2 ×
$$V = 30 \times 0.2$$

 $\therefore V = 30 ml$
(d) $N_1V_1 = N_2V_2$ 5N×1 lit = x×10 lit.
 $\therefore x = 0.5 N$

16. (b) Normality =
$$N = \frac{W_B \times 1000}{Eq.wt \times V}$$

 \therefore Eq. Wt = $\frac{0.45 \times 1000}{0.5 \times 20} =$

15.

Basicity =
$$\frac{\text{Molec. Wt}}{\text{Eq. Wt}} = \frac{90}{45} = 2$$

45

17. (b)
$$\stackrel{!}{\xrightarrow{}} 2H_2O \rightarrow 126$$
 is molecular wt.
 $COOH$
 \therefore Equivalent wt. = Molecular wt./2 = 63

18. (c)
$$NV = NV \Longrightarrow 5 \times 10 = \frac{1}{10x} \times x$$
 ... $x = 500ml$

19. (d)
$$KMnO_4 \rightarrow K_2MnO_4$$

$$\frac{\text{Molecular weight}}{1} = \frac{158}{1} = 158$$

21. (b) Hyposolution are used as the reducing agent with potassium dicromate solution $K_{2}Cr_{2}O_{7} = \frac{\text{Molecularweight}}{\text{Molecularweight}}$

22. (d)
$$N_1 V_1 = N_2 V_2$$

 $N \times 25 = \frac{109.5 \times 32.9}{36.5} \Rightarrow N = \frac{109.5 \times 32.9}{36.5 \times 25}$
 $N_3 V_3 = N_4 V_4$ $(V_3 = \frac{m}{d}, V_3 = \frac{125}{1.25})$
 $\frac{109.5 \times 32.9}{36.5 \times 25} \times 100 = 0.84 \times V \Rightarrow V = 470 \, ml$

23. (a)
$$N_1 V_1 = N_2 V_2$$

 $0.1 \times V_1 = 0.13 \times 80 \Longrightarrow V_1 = 104 \, ml$
 $wt \times 1000$

24. (a) Molarity=
$$\frac{wt \times 1000}{\text{Eq. wt.} \times \text{vol.}}$$
$$0.1 = \frac{wt \times 1000}{40 \times 250}$$

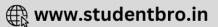
$$\therefore$$
 wt. required = 1 gm
 $x \times 1000$

25. (a)
$$1 = \frac{x \times 1000}{63 \times 100} \Rightarrow x = 6.3 \ gms$$

26. (d)
$$10 \times x = 1 \times 1$$

 $x = 0.1$ *liter* = 100 *cc*

32. (b) In acidic medium 2 molecules of $KMnO_4$ gives 5 atoms of oxygen $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5(O)$ $2 \times 158 = \frac{316 \times 8}{80} = 31.6$.


So, equivalent wt. of
$$KMnO_4$$
 in acidic medium is
= 31.6 gm

(c)
$$N_1 V_1 = N_2 V_2$$

 $N_1 \times 20 = N_2 \times 22.18$
 $N_1 = \frac{N_2 \times 22.18}{20}$ (i)

NaOH solution = HCl solution

Get More Learning Materials Here :

33.

$$N_{2} \times 21.5 = \frac{1}{10} \times 20$$

$$N_{2} = \frac{20}{10 \times 21.5}$$
.....(ii)
by eq. (i) and (ii)
$$N_{1} = \frac{20 \times 22.18}{20 \times 10 \times 21.5} = \frac{22.18}{215} = 0.1N$$
34. (b) *M HSO* = 2*N* H₂SO₄

$$\frac{N_{2}SO_{4}}{N_{1}V_{1}} = N_{2}V_{2}$$

$$2 \times V = 10 \times 1, \quad V_{1} = \frac{10 \times 1}{2} = 5 ml$$
36. (c)
$$N = \frac{W_{B} \times 1000}{Eq.wt. \times V}; W_{B} = \frac{N \times Eq.wt \times V}{1000}$$

$$= \frac{0.1 \times 40 \times 100}{1000} = 0.4$$
38. (d) 20 m/of 0.1*N* AraOH neutralize 20 m/ of 0.1*N* acid
Weight of acid = 0.126 g
Volume = 20 mk $\frac{20}{1000}$ litre
Normality = 0.1 *N*
Equivalent weight = $\frac{Weight of acid}{N \times V}$

$$= \frac{0.126 \times 1000}{0.1 \times 20} = 63$$
40. (b) 2×31.82 , \therefore wt of one atom $= \frac{2 \times 31.82}{N} = \frac{63.64}{N}$
41. (d) $Na_{2}S + I_{2} + Na_{2}SO_{3} \rightarrow Na_{2}S_{2}O_{3} + 2NaI$
43. (c) $X = \frac{50}{10} = 5; Y = \frac{50}{20} = 2.5$
Ratio of g atoms of X and Y = 2 : 1
47. (c) $N = \frac{0.53 \times 1000}{53 \times 100} \Rightarrow N = \frac{1}{10}$
So normality of the solution will be $\frac{N}{10}$.
51. (b) Acid = 0.1 \times 100 = 10
Base = 0.2 × 100 = 20
 \therefore solution will be basic. 0.1*N* of *NaOH* aris in 200 cm³ of solution.
 \therefore resulting normality = 0.05 *N* basic.
53. (b) Equivalent weight of $Zn(OH)_{2} = 1$, only one *OH* is in 200 cm³ of solution.
 \therefore resulting normality = 0.05 *N* basic.
53. (c) $\frac{M_{1}V_{1}}{2N(OH)_{2}} = \frac{MO(2Cull arl weight)}{acidity} = \frac{M}{1}$
Acidity of $Zn(OH)_{2} = 1$, only one *OH* is replaced.
55. (a) $M_{1}V_{1} = M_{2}V_{2}$
 $(Na_{2}CO_{3}) = (HCI)$
 $0.25M \times 25 = 0.5M \times V_{2}$
 $V_{2} = \frac{0.25M \times 25}{0.5M} = 12.5 ml$
56. (c) $\frac{0.16}{x} \times \frac{1000}{25} = \frac{1}{10} \implies 56.4 \approx \frac{1}{10} \therefore x = 64$
Mol. wt, 64 × 2 = 128

(d) If $N_1V_1=N_2V_2$ then the solution will be neutral 57.

$$\therefore 1 \times 100 = 10 \times 10$$

$$100 = 100 \implies \text{solution in neutral}$$
59. (c) Volume = 25 $ml = \frac{25}{1000} litre$
Normality = $\frac{wt}{eq.wt \times \text{Volume}} \implies 0.12 = \frac{0.1914 \times 1000}{E \times 25}$
 $eq.wt. = \frac{0.1914 \times 1000}{0.12 \times 25} = 63.8$
60. (b) Eq.wt = $\frac{\text{MolecularWt.}}{\text{basicity}} = \frac{W}{3}$
61. (d) Valency = $\frac{26.89}{8.9} = 3$
at mass = Eq.wt × valency = $8.9 \times 3 = 26.7$
62. (b) $\because 4 \text{ gms of } Br$ combines with $1 \text{ gm of } Ca$
 $\therefore 80 \text{ gms of } Br$ combines with $\frac{1}{4} \times 80 = 20$
Therefore, equivalent wt of $Ca = 20$
63. (a) $N = \frac{4 \times 1000}{40 \times 100} = 1N$
64. (d) $NV = NV$
 $1 \times 1 = 0.5 \times 2 \times 1$
as $0.5 N$ will give double the amount of H ions
65. (a) $BaCO_3 \Rightarrow BaO + CO_2 \uparrow$
 $\therefore 197 g BaCO_3$ on decompose gives = 22.4 litre CO_2
 $\therefore 1 g BaCO_3$ will give $= \frac{22.4}{197} = \text{litre} CO_2$
 $= \frac{22.4 \times 9.85}{197} = 1.12 \text{ litre} CO_2$
66. (c) As the resultant solution will be neutral so either of them can be used.
67. (d) Phenolphthalein is used as it is colourless and becomes pink only in basic medium.
69. (d) Here *KMnO* itself works as an indicator.
70. (a) The resulting solution is aclourles.
71. (c) As the resulting solution is aclourles.
72. (c) As the resulting solution is aclourles.
73. (d) Here *KMnO* itself works as an indicator.
74. (c) Strength = $\frac{W}{V} = NE$
75. (d) As H_3PO_4 can donate $3 H^+$ in the solution, as a result the normality of solution is $3N$ as Molarity × basicity = Normality
76. (b) $I_2 + 2S_2O_3^- \Rightarrow 2I_2^- + S_4O_6^{2-}$

76. (b)
$$I_2 + 2S_2O_3^- \rightarrow 2I^- + S_4O_6^{2-}$$

 \therefore Eq. wt. = $\frac{1}{2} \times$ molecular wt.
77. (a) $40 \times 1 = 16 \times x \implies x = \frac{40}{16} = 1$

(a)
$$40 \times 1 = 16 \times x \implies x = \frac{40}{16} = 2.5 \ ml$$

78. (b) 18 *M* of
$$H_2SO_4 = 36$$
 N of H_2SO_4
 $N_1V_1 = N_2V_2 \Rightarrow 36 \times 10 = N \times 1000$
 \therefore *N* = 0.36 *N*
79. (d) $\frac{1}{10} = \frac{W \times 1000}{\text{eq.wt} \times \text{vol.}} = \frac{W \times 1000}{49 \times 1000} \Rightarrow W = 4.9 \text{ gms}$
80. (c) $M_1V_1 = M_2V_2$

$$0.1 \times V = M_2 \times 2V \Rightarrow M_2 = \frac{1 \times V}{2V} = 0.05M$$

CLICK HERE **》**

N of

8. (c)
$$N_1V_1 = N_2V_2 \Rightarrow \frac{1}{5} \times 10 = \frac{1}{20} \times V_2 \Rightarrow V_2 = 40 \ ml$$

82. (b) $N_1V_1 = N_2V_2$
 $0.15 \times 25 = 0.1V_2 \Rightarrow V_2 = 37.5 \ ml$
Water to be added $= 37.5 - 25 = 12.5 \ ml$
83. (c) $N_1V_1 = N_2V_2 \Rightarrow 0.2 \times V_1 = 0.2 \times 40 \Rightarrow V_1 = 40 \ ml$
85. (c) $Mn^{+7} \rightarrow Mn^{+6} = \frac{158}{1} = 158$
88. (d) Given, $N = 0.1$, $w = 10 \ gm$, equivalent weight $= 50, V = ?$
 $V = \frac{w \times 1000}{Eq.wt. \times N} = \frac{1 \times 1000}{50 \times 0.1} = 200 \ cm^3$
89. (c) $2Ag_2CO_3 \longrightarrow 4Ag + 2CO_2 + O_2$
 $[(2 \times 108) + 12 + 48] 4 \times 108$
 $2 \times 276 = 552 4 \times 108$
 $2 \times 276 = 52 4 \times 108$
 $2 \times 276 = 52 4 \times 108$
 $2 \times 106 \times 12 \times 100$
 $3 \times 10.164 \ MaOH \equiv 0.164 \ NaOH$
We know, $N_1V_1 = N_2V_2$; $N_1 \times 25 = 0.164 \times 32.63$
 $0.214 \ N \ H_2SO_4 \approx \frac{0.214}{2} \ M \ H_2SO_4$
(:' basicity of $\ H_2SO_4 \ is 2$)
 $\equiv 0.107 \ M \ H_2SO_4$
91. (a) We know, $[H^+] = 10^{-pH} = 10^{-13}$;
 $\therefore [OH^-] = \frac{10^{-14}}{10^{-13}} = 10^{-1}$
Hence, normality of solution = 0.1
We know, $w = \frac{NEV}{1000} = \frac{0.1 \times 74 \times 250}{2 \times 1000} = 0.925 \ gm$
92. (d) $N_1V_1 = N_2V_2 \ or \ M_1V_1 = M_2V_2$
 $\therefore 12 \times V = 18 \times 240$
 $V_1 = \frac{18 \times 240}{12} \ 260 \ ml = 0.36 \ litre$
93. (c) For complete neutralisation,
milli equivalent of base = milli equivalent of acid
 $N_1V_1 = N_2V_2 \Rightarrow \frac{1}{10} \ V_1 = \frac{1}{25} \times 100; \ V_1 = 40 \ ml.$
94. (c) Normality = molarity \times basicity or acidity (for $HCI)$
 $N_2 = 0.4 \times 1 = 0.4N \ basicity = (for NaOH acidity =)$
 $N_1 = 0.6 \times 1 = 0.6N \ V_1 = ?V_2 = 30 \ cm^3$
From the equation, $N_1V_1 = N_2V_2$
 $0.6 \times V_1 = 0.4 \times 30$
 $V_1 = \frac{0.4 \times 30}{0.6} = 20 \ cm^3$
95. (b) The solubility of l in water increases by the addition of KI due to ormation of polyhaldie in, *i.e.* I_3
 $KI + I_2 \rightarrow KI_3$
96. (d) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$
 $1 \ mole \ \frac{1}{2} \ molume$

1*ml*
$$H_2$$
 reacts with $\frac{1}{2}$ *ml* O_2
30*ml* of H_2 reacts with $=\frac{1}{2} \times 30 = 15ml$ O_2
(20–15) = 5*ml* of O_2 will left at the end of the reaction.

97. (a) Standard solution of I_2 is used to estimate sulphite, thiosulphite, arsenite etc.

98. (a)
$$I_2 + Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$

 $I_2 + S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$

۸

Critical Thinking Questions

9. (c)
$$Hg_2Cl_2$$
 is white insoluble salt.
 $Hg_2Cl_2 + 2NH_4OH \rightarrow Hg + Hg(NH_2)Cl + NH_4Cl + 2H_2O$
Black

(Black ppt.)

10. (d)
$$Zn^{2+} + 2NaOH \rightarrow Zn(OH)_2 + 2Na^+$$

 $Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O_2$

 (c) Chromium ion gives in hot and cold. Oxidising and reducing flame green-colour.

12. (b)
$$HgI_2 + 2KI \rightarrow K_2(HgI_4)$$
 soluble
Red solid
 $HgI_2 \rightarrow Hg + I_2$ violet foams.

13. (c) Yellow filtrate is due to chromate ions (CrO_4^{--}) and green residue is due to $Fe(OH)_2$.

14. (c)
$$1 \times V = \frac{12}{120} \times 2 = 200ml$$
.

CLICK HERE

>>>

15. (a) $AgNO_3$ react with all conditions and gives corresponding result.

🕀 www.studentbro.in

$$\begin{array}{l} AgNO_3 + 2NH_3 \rightarrow [Ag(NH_3)_2]NO_2 + H_2O \\ & \text{White ppt} \end{array}$$

$$\begin{array}{l} AgNO_3 + NaCl \rightarrow AgCl + NaNO_3 \\ & \text{White ppt} \end{array}$$

Get More Learning Materials Here : 📕

$$2AgNO_3 + H_2S \rightarrow Ag_2S + 2HNO_3.$$

Black ppt

16.

17.

(c)

 $N_1 \times 20ml = 0.1 \times 25$

 $N_1V_1 = N_2V_2$

NaOH

HCl

λ

$$V_1 = \frac{0.1 \times 25}{20} = 0.125$$
.

If one *litre HCl* present in 0.125

Therefore in 10 *ml*
$$\frac{0.125}{1000} \times 10 = 12.5$$

The normality of conc. *HCl* is 12.5*N.*

(a) 20 *ml* of $0.3N Na_2S_2O_3$

- =20ml of $0.3NI_2$ Solution
- = 20 m l of $0.3 N H_2 O_2$ solution
- $\equiv 25 \, ml$ of $0.08 \, N \, H_2 O_2$ solution

Mass of
$$H_2O_2$$
 100*ml* solution = $\frac{0.08 \times 17 \times 100}{1000}$

$$= 0.136 \, gm$$

 $68 \ gm \ H_2O_2$ evolve oxygen at NTP = 22400 ml

 $0.00136\,gmH_2O_2\,$ evolve oxygen at NTP

$$=\frac{22400}{68}\times 0.00136=0.448$$
 For $0.1N$, the solution is of 0.448 volume.

 \therefore 3*N* , volume = 0.448 × 3 = 1.344 *ml* .

19. (c)
$$Pb^{+2} + H_2S \xrightarrow[Back ppt]{acidic} PbS \downarrow + H_2 \uparrow$$

 $(Black ppt)$
 $3PbS + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 3S + 4H_2C$
 $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2HNO_3 \uparrow$
(white ppt.)

20. (d) It is a characteristic property of IV group concentration of sulphide ions is lowered by formation of the weak acid H_2S .

Assertion and Reason

1. (b) Lime water become turbid on passing CO_2 into it because both reacts to produce insoluble calcium carbonate. $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ Lime Water CalciumCarbonate (Insoluble)

If more CO_2 is passed than soluble calcium bicarbonate is formed which clear the solution

$$\begin{array}{c} CaCO_3 + H_2O + CO_2 \rightarrow Ca(HCO_3)_2 \\ \text{Insoluble} \\ \text{(Soluble)} \end{array}$$

The reason that lime water is $Ca(OH)_2$ is also correct. Here, both assertion and reason are correct but reason is not a correct explanation of assertion.

2. (c) Assertion is true but reason is false. Sh(H) is a basis radial of HP

Sb(III) is a basic radical of IIB group for which group reagent is H_2O is presence of dilute HCl It is necessary to maintain the proper hydrogen ion concentration for the precipitation of IV group cations.

3. (d) CuS is one such exception which is not decomposed by dil. H_2SO_4

- **4.** (d) $PbCl_2$ does not react with conc. H_2SO_4 as $PbSO_4$ is insoluble in water.
- 5. (e) $ZnCO_3$ will react with conc. H_2SO_4 to give CO_2 Radicals of dil. acid test are decomposed by conc. H_2SO_4 in cold.
 - (c) Cd^{2+} salts are generally white in colour, however, CdS is yellow in colour.

6.

9.

- (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- **8.** (d) Cu^{2+} salts are generally blue in colour, however, *CuS* is black in colour.
 - (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- (e) Sulphides do not give any test with BaCl₂ (aq.) as BaS is soluble in water.
- 12. (c) It is due to the formation of insoluble BiOCl on hydrolysis. $BiCl_3 + H_2O \rightarrow BiOCl + 2HCl$ White ppt.

Chemical Analysis

what volume of a solution of hydrochionic actu containing 7.5 g of acid per litre would sufficient for the exact neutralization of sodium hydroxide obtained by allowing 0.46 g metallic sodium to act upon water

2001]

(Cl = 35.5, Na = 23.0, 0 = 16)	[UPSEAT
--------------------------------	---------

- (a) 10 *ml* (b) 15 *ml*
- (c) 20 *ml* (d) 8 *ml*
- **2.** A white sodium salt dissolves readily in water to give a solution which is neutral to litmus. When silver nitrate solution is added to the solution, a white precipitate is formed which does not dissolve in dilute nitric acid. The anion could be
 - (a) SO_4^{2-} (b) CO_3^{2-}
 - (c) S^{2-} (d) Cl^{-}
- **3.** Sometimes yellow turbidity appears on passing H_2S gas even in the absence of the second group radicals. This happens because
 - (a) Sulphur is present in the mixture as an impurity
 - (b) The fourth group radicals are precipitated as sulphides
 - (c) The H_2S is oxidized by some acid radicals
 - (d) The third group radicals are precipitated
- **4.** The colour of $CuCr_2O_7$ solution in water is green because

[Bihar CEE 1995]

[MP PMT 1996; MP PET/PMT 1998]

8.

9.

10.

11.

- (a) $Cr_2O_7^{2-}$ ions are green
- (b) Cu^{++} ions are green
- (c) Both ions are green
- (d) Cu^{++} ions are blue and $Cr_2O_7^{2-}$ ions are yellow
- **5.** Pb^{++} , Cu^{++} , Zn^{++} , and Ni^{++} ions are present in a given acidic solution. On passing hydrogen sulphide gas through this solution the available precipitate will contain

- (a) *PbS* and *NiS* (b) *PbS* and *CuS*
- (c) CuS and ZnS (d) CuS and NiS
- **6.** In acidic medium, dichromate ion oxidises ferrous ion to ferric ion. If the *gram* molecular weight of potassium dichromate is 294 *grams*, its *gram* equivalent weight is.....*grams*

(a) 294	(b) 127
---------	---------

(c) 49 (d) 24.5

7. Metallic tin in the presence of *HCI* is oxidise K_2 *CrO*, to stannic chloride. What volume of decinormal dichromate solution would be reduced by 1 *g* of tin

(a)	168.49 <i>ml</i>	(b)	175.49 <i>ml</i>
(c)	170.50 <i>ml</i>	(d)	162.38 <i>ml</i>

ET Self Evaluation Test - 21

- 50 ml 10 $N H_2SO_4$, 25 ml 12N-HCl and 40 ml 5 $N HNO_3$ were mixed together and the volume of the mixture was made 1000 ml by adding water. The normality of the resultant solution will be
- [Pb. PMT 1998] (a) 1 N (c) 3 N (b) 2 N (d) 4 N
- An aqueous solution of colourless metal sulphate M, gives a white precipitate with NaOH. This was soluble in excess of NaOH. On passing H_2S through this solution a white precipitate is formed [AlimSn982]M in the salt is

			[KCE	T 19	90]
(a) <i>Ca</i>	(b) <i>Ba</i>				
(c) <i>Al</i>	(d) <i>Zn</i>				
A compound is	soluble in water. If ammonia	is	added,	а	red

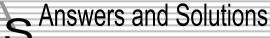
A compound is soluble in water. If ammonia is added, a red precipitate appears which is soluble in dilute HCl. The compound has [CPMT 1974]

(a)	Aluminium	(b)	Zinc
(c)	lron	(d)	Cadmium

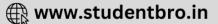
[CPMT 1997; MP PET/PMT 1998]

[UPSEAT 2001]

- (a) $KHgI_4$ (b) $K_2HgI_4 + NH_4OH$
- (c) $K_2HgI_4 + KOH$ (d) $KHgI_4 + NH_4OH$


12. Neutral ferric chloride is added to the aqueous solution of acetate. The blood red colour is obtained, it is due to the compound

- (a) $Fe(OH)_2$ (b) $Fe(OH)_3$
- (c) $Fe(CH_3COO)_3$ (d) $Fe(OH)_2(CH_3COO)$


13. Mark the gas which turns lime water milky

Nessler's reagent is

- (a) H_2S (b) SO_2
- (c) Cl_2 (d) CO_2 Which of the following reactions with H_2S does not
- **4.** Which of the following reactions with H_2S does not produce [EAMCET 2003] metallic sulphide [AIIMS 1997]
 - (a) $ZnCl_2$ (b) $CdCl_2$ (c) $COCl_2$ (d) $CuCl_2$

CLICK HERE

(SET -21)

1. (a)
$$\frac{0.46}{23} = \frac{73}{36.5} \times V(l)$$

 $V = 10 \, ml$

2. (d)
$$NaCl + H_2O \rightarrow NaCl_{(aq)}$$

 $NaCl + AgNO_3 \rightarrow AgCl \xrightarrow{HNO_3}{dil}$ Insoluble
 $(aq) \qquad (aq) \qquad (a$

- 3. (b) This is due to the precipitation of fourth group radical as sulphides due to high concentration of S^{2-} in the solution as a result yellow turbidity is obtained
- **4.** (d) Cu^{++} ions are blue and $Cr_2O_7^{--}$ ions are yellow, yellow and blue combination gives-green colour.
- 5. (b) As both Pb^{2+} and Cu^{2+} require acidic medium and low concentration of S^{2-} to be precipitated as sulphide and low concentration of S^{2-} is provided by common ion effect of *HCl* and *HS*.
- 6. (c) In acidic medium potassium dicromate shows + 6 oxidation state $\frac{M}{6} = \frac{294}{6} = 49$

7. (a)
$$0.1 \times V = \frac{2}{119}$$

 $V = 168.06 \, ml$.

8. (a)
$$H_2SO_4$$
 HCl HNO_3 Total volume
 $N_1V_1 + N_2V_2 + N_3V_3 = N \times 1000ml$
 $N = \frac{N_1V_1 + N_2V_2 + N_3V_3}{1000}$
 $= \frac{50 \times 10 + 25 \times 12 + 40 \times 5}{1000}$

$$N = \frac{500 + 300 + 200}{1000} = \frac{1000}{1000} = 1N$$

9. (d)
$$Zn^{+2} + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$$

(white ppt.)
 $Na_2ZnO_2 + H_2S \rightarrow ZnS + 2NaOH$
(White ppt.)

(white ppt.)
10. (c)
$$FeCl_3 + 3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4Cl_{(red)}$$

 $2Fe(OH)_3 + 6HCl \rightarrow 2FeCl_3 + 6H_2O_{(soluble in HCl)}$

11. (c) Nessler's reagent $= K_2 H g I_4 + K O H$.

12. (c)
$$3CH_3COONa + FeCl_3 \rightarrow Fe(CH_3COO)_3 + 3 NaCl$$

Blood red ppt.

13. (bd) CO and SO turns lime water milky, as

$$Ca(OH)_2 (aq.) + CO_2 \rightarrow CaCO_3 \downarrow +H_2O$$

(milky)
 $Ca(OH)_2 + SO_2 \rightarrow CaSO_3 \downarrow +H_2O$
(milky)

14. (c) In
$$COCl_2$$
 metal is not present.

